Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Flexoelectricity-driven toroidal polar topology in liquid-matter helielectrics

Abstract

Magnetic and electric dipoles have similar symmetry and are therefore expected to exhibit many common structures. However, despite frequent reports of various spin textures composed of magnetic dipoles, investigations on long-range ordered electric dipoles have been scarce, until recently. Here we discover spontaneous toroidal polar topology in an emerging ferroelectric liquid state with polarization helices, dubbed ‘helielectric nematic’. The interplay between liquid-crystal elasticity and polar interactions results in a continuous in-plane rotation of the polarization, producing a periodic toroidal assembly. In partial analogy with magnetism, the neighbouring toroidal domains are separated by circularly shaped domain walls. The local polarization switching enables unique shrinkage and expansion dynamics of the toroidal domains. The discovery provides opportunities for developing designable and switchable ferroelectric-liquid-matter opto-electronics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The emerging polarization LC systems as analogue of the ferromagnetic systems.
Fig. 2: Observation of the toroidal polar topology.
Fig. 3: Determination of the toroidal polar topology in the linear and nonlinear optical regimes.
Fig. 4: Field-induced transformation of the toroidal polar topology.
Fig. 5: Flexoelectricity-driven stabilization of the toroidal polar topology.

Similar content being viewed by others

Data availability

All data that support the findings of this study are available in the article and in Supplementary Materials. Source data are deposited in the Open Science Framework (OSF) database of ‘Polar toroidal topology in helielectric nematics’ (https://doi.org/10.17605/OSF.IO/UKHY2).

Code availability

The codes used for the numerical calculations are available from the corresponding author upon reasonable request.

References

  1. Merzbacher, E. Quantum Mechanics (John Wiley & Sons, 1998).

  2. Griffiths, D. J. Introduction to Electrodynamics 4th edn (Cambridge Univ. Press, 2017).

  3. Pribiag, V. et al. Magnetic vortex oscillator driven by d.c. spin-polarized current. Nat. Phys. 3, 498–503 (2007).

    Article  CAS  Google Scholar 

  4. Martin, L. W. & Rappe, A. M. Thin-film ferroelectric materials and their applications. Nat. Rev. Mater. 2, 16087 (2016).

    Article  ADS  Google Scholar 

  5. Bogdanov, A. N. & Panagopoulos, C. Physical foundations and basic properties of magnetic skyrmions. Nat. Rev. Phys. 2, 492–498 (2020).

    Article  Google Scholar 

  6. Wu, J.-S. & Smalyukh, I. Review: hopfions, heliknotons, skyrmions, torons and both abelian and nonabelian vortices in chiral liquid crystals. Liq. Cryst. Rev. 10, 1–35 (2022).

    Google Scholar 

  7. Tokura, Y. & Seki, S. Multiferroics with spiral spin orders. Adv. Mater. 22, 1554–1565 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Gu, H. et al. An overview of the magnetoresistance phenomenon in molecular systems. Chem. Soc. Rev. 42, 5907–5943 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Zlotnikov, A. O., Shustin, M. S. & Fedoseev, A. D. Aspects of topological superconductivity in 2D systems: noncollinear magnetism, skyrmions, and higher-order topology. J. Supercond. Nov. Magn. 34, 3053–3088 (2021).

    Article  CAS  Google Scholar 

  10. Guo, M. et al. Toroidal polar topology in strained ferroelectric polymer. Science 371, 1050–1056 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Bennett, D. & Remez, B. On electrically tunable stacking domains and ferroelectricity in moiré superlattices. npj 2D Mater. Appl. 6, 7 (2022).

    Article  CAS  Google Scholar 

  12. Rößler, U. K., Bogdanov, A. N. & Pfleiderer, C. Spontaneous skyrmion ground states in magnetic metals. Nature 442, 797–801 (2006).

    Article  ADS  PubMed  Google Scholar 

  13. Nembach, H. T. et al. Linear relation between Heisenberg exchange and interfacial Dzyaloshinskii–Moriya interaction in metal films. Nat. Phys. 11, 825–829 (2015).

    Article  CAS  Google Scholar 

  14. Zhao, X. et al. Spontaneous helielectric nematic liquid crystals: electric analog to helimagnets. Proc. Natl Acad. Sci. USA. 118, e2111101118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhou, J. et al. Spontaneous periodic polarization wave in helielectric fluids. PNAS Nexus 2, 265 (2023).

    Article  Google Scholar 

  16. Rosseto, M. P. & Selinger, J. V. Theory of the splay nematic phase: single versus double splay. Phys. Rev. E 101, 052707 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Sebastián, N. et al. Ferroelectric-ferroelastic phase transition in a nematic liquid crystal. Phys. Rev. Lett. 124, 037801 (2019).

    Article  ADS  Google Scholar 

  18. Mertelj, A. et al. Splay nematic phase. Phys. Rev. X 8, 041025 (2018).

    CAS  Google Scholar 

  19. Luk’yanchuk, I., Tikhonov, Y., Razumnaya, A. & Vinokur, V. M. Hopfions emerge in ferroelectrics. Nat. Commun. 11, 2433 (2020).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  20. Wang, Y. J. et al. Polar meron lattice in strained oxide ferroelectrics. Nat. Mater. 19, 881–886 (2020).

    Article  ADS  PubMed  Google Scholar 

  21. Yang, J. et al. Spontaneous electric-polarization topology in confined ferroelectric nematics. Nat. Commun. 13, 7806 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shi, P.-P. et al. Symmetry breaking in molecular ferroelectrics. Chem. Soc. Rev. 45, 3811–3827 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Das, S. et al. Observation of room-temperature polar skyrmions. Nature 568, 368–372 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Ahluwalia, R. et al. Influence of flexoelectric coupling on domain patterns in ferroelectrics. Phys. Rev. B 89, 174105 (2014).

    Article  ADS  Google Scholar 

  25. Zubko, P., Jung, D. J. & Scott, J. F. Space charge effects in ferroelectric thin films. J. Appl. Phys. 100, 114112 (2006).

    Article  ADS  Google Scholar 

  26. Nishikawa, H. et al. A fluid liquid-crystal material with highly polar order. Adv. Mater. 29, 1702354 (2017).

    Article  Google Scholar 

  27. Mandle, R. J., Cowling, S. J. & Goodby, J. W. A nematic to nematic transformation exhibited by a rod-like liquid crystal. Phys. Chem. Chem. Phys. 19, 11429–11435 (2017).

    Article  CAS  PubMed  Google Scholar 

  28. Mandle, R. J., Cowling, S. J. & Goodby, J. W. Rational design of rod-like liquid crystals exhibiting two nematic phases. Chem. - Eur. J. 23, 14554–14562 (2017).

    Article  CAS  PubMed  Google Scholar 

  29. Chen, X. et al. First-principles experimental demonstration of ferroelectricity in a thermotropic nematic liquid crystal: polar domains and striking electro-optics. Proc. Natl Acad. Sci. USA. 117, 14021–14031 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li, J. et al. Development of ferroelectric nematic fluids with giant-ε dielectricity and nonlinear optical properties. Sci. Adv. 7, eabf5047 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  31. Li, J. et al. How far can we push the rigid oligomers/polymers toward ferroelectric nematic liquid crystals? J. Am. Chem. Soc. 143, 17857–17861 (2021).

    Article  CAS  PubMed  Google Scholar 

  32. Manabe, A., Bremer, M. & Kraska, M. Ferroelectric nematic phase at and below room temperature. Liq. Cryst. 48, 1079–1086 (2021).

    Article  CAS  Google Scholar 

  33. Caimi, F. et al. Surface alignment of ferroelectric nematic liquid crystals. Soft Matter 17, 8130–8139 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Zhao, X., Huang, M. & Aya, S. Research progress of ferroelectric nematic liquid crystals. Chin. J. Liq. Cryst. Disp. 38, 77 (2023).

    Article  CAS  Google Scholar 

  35. Máthé, M. T., Buka, Á., Jákli, A. & Salamon, P. Ferroelectric nematic liquid crystal thermomotor. Phys. Rev. E 105, L052701 (2022).

    Article  ADS  PubMed  Google Scholar 

  36. Perera, K. et al. Ferroelectric nematic droplets in their isotropic melt. Soft Matter 19, 347–354 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Sebastián, N. et al. Polarization patterning in ferroelectric nematic liquids via flexoelectric coupling. Nat. Commun. 14, 3029 (2023).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  38. Kumari, P., Basnet, B., Wang, H. & Lavrentovich, O. D. Ferroelectric nematic liquids with conics. Nat. Commun. 14, 748 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. Caimi, F. et al. Fluid superscreening and polarization following in confined ferroelectric nematics. Nat. Phys. 19, 1658–1666 (2023).

    Article  CAS  Google Scholar 

  40. Li, J. et al. General phase-structure relationship in polar rod-shaped liquid crystals: importance of shape anisotropy and dipolar strength. Giant 11, 100109 (2022).

    Article  CAS  Google Scholar 

  41. Posnjak, G., Čopar, S. & Muševič, I. Points, skyrmions and torons in chiral nematic droplets. Sci. Rep. 6, 26361 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  42. Guyonnet, J. Ferroelectric Domain Walls: Statics, Dynamics, and Functionalities Revealed by Atomic Force Microscopy (Springer, 2014).

  43. Zavvou, E. et al. Polarisation-driven magneto-optical and nonlinear-optical behaviour of a room-temperature ferroelectric nematic phase. Soft Matter 18, 8804–8812 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  44. Chandra, P. & Littlewood, P.B. in Physics of Ferroelectrics: A Modern Perspective (eds Rabe, K.M., Ahn C.H. & Triscone J.-M.) 69–116 (Springer, 2007).

  45. Dierking, I. Textures of Liquid Crystals (John Wiley & Sons, 2003).

  46. Muthukumar, M. in Interphases and Mesophases in Polymer Crystallization III (ed. Allegra, G.) 241–274 (Springer, 2005).

  47. Feng, C. et al. Electrically tunable reflection color of chiral ferroelectric nematic liquid crystals. Adv. Opt. Mater. 9, 2101230 (2021).

    Article  CAS  Google Scholar 

  48. Zhou, J., Xia, R., Huang, M. & Aya, S. Stereoisomer effect on ferroelectric nematics: stabilization and phase behavior diversification. J. Mater. Chem. C 10, 8762–8766 (2022).

    Article  CAS  Google Scholar 

  49. Yokoyama, H., Kobayashi, S. & Kamei, H. Deformations of a planar nematic-isotropic interface in uniform and nonuniform electric fields. Mol. Cryst. Liq. Cryst. 129, 109–126 (1985).

    Article  ADS  CAS  Google Scholar 

  50. Jamali, V. et al. Experimental realization of crossover in shape and director field of nematic tactoids. Phys. Rev. E 91, 042507 (2015).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

S.A. and M.H. acknowledge the National Key Research and Development Program of China (No. 2022YFA1405000), the Recruitment Program of Guangdong (No. 2016ZT06C322) and the 111 Project (No. B18023). S.A. acknowledges support from the Research Fund for International Excellent Young Scientists (RFIS-II; No. 1231101194), the International Science and Technology Cooperation Program of Guangdong province (No.2022A0505050006) and the Fundamental Research Funds for the Central University (No. 2022ZYGXZR001). M.H. acknowledges support from the National Natural Science Foundation of China (NSFC No. 52273292).

Author information

Authors and Affiliations

Authors

Contributions

S.A. conceived the study and designed the research. J.L. and M.H. synthesized the materials. J.Y., Y.Z. and S.A. made topological analyses. J.Y., Y.Z. and S.A. conducted the measurements and analyses of the material physical properties. Y.Z. and S.A. made the investigation of the analytical solutions and conducted the numerical simulations. J.Y., Y.Z. and S.A. wrote the manuscript. All the authors discussed and amended the manuscript.

Corresponding authors

Correspondence to Mingjun Huang or Satoshi Aya.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Richard Mandle, Liana Lucchetti and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Numerical calculation of the field-induced dynamics of toroidal polar topology.

a, The first row displays the time evolution of the polarization field and the spatial distribution of the elevation (out-of-plane) angle δ, which aligns well with experimental results. The second row shows the evolution of charge distributions (σb) on DWs and at the droplet’s centre, with corresponding total electric field (E = E0 + Edepol) donated by orange arrows. The direction of the applied d.c. electric field (E0) is shown by a red arrow. b, The evolutions of spatial distributions of the depolarization free energy density fdepol, the total electrostatic energy density felect, the flexoelectric free energy density fflexo, and the total free energy density ftotal, respectively. c, Time evolutions of the total free energy total (black solid line) and the average out-of-plane angle \(\bar\delta\) of the polarization (dark-yellow solid line) in an area with a clear out-of-plane tilting (circled by a green box in the right-bottom corner figure of (b)). The bottom of (c) shows time evolutions of various integrated free energy terms in the circled region, including the splay elastic energy (blue dotted line), twist elastic energy (red dotted line), bend elastic energy (light-yellow dotted line), polarization gradient energy (purple long-dash line), flexoelectric energy (pink dot-dash line and electric) and electrostatic energy (green scattered triangles connected by a long-dash line). The free energies are defined in Eqs. (S53)−(S55). Details about simulation parameters are provided in Methods and Supplementary Discussion 4.

Extended Data Fig. 2 Visualization of the role of the depolarization effect on field-induced dynamics of toroidal polar topology.

Comparisons between the simulation and experimental results on the polarization field reorientation behaviours under d.c. electric fields are shown. a,b, The directionalities of the applied d.c. electric field are shown by red arrows. The first rows of (a) and (b) show simulations of the time evolution of the polarization field under d.c. electric fields by considering the depolarization effect. The results are well consistent with the experimental observations. As a comparison, the second rows of (a) and (b) show the simulation by neglecting the depolarization effect. The results demonstrate complete deviation from the experiments. c,d, (c) and (d) are the corresponding equilibrium polarization fields under the electric fields reconstructed from the experimental FCPM images. Scale bar, 20 μm. The Methods and Supplementary Discussion 4 contain the parameters used in the simulations.

Extended Data Fig. 3 Potential director and polarization fields in the apolar chiral nematic and HN* states.

a-f, Potential director and polarization fields in the apolar chiral nematic (a-c) and HN* (d-f) states under the strong planar anchoring condition. The helical axes of the twisted structures (h) are donated by black arrows. Assuming that the top and bottom directors or polarizations are strongly anchored along the y direction, the possible structures include: the fingerprint-like texture without (a) or with (d) disclinations; Grandjean textures (c and f); the untwisting polarization planar structure without (b) or with (e) disclinations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–17, Materials, Discussions 1–4, List of Videos 1–2 and References.

Supplementary Video 1

PLM observation of the growth process of the toroidal polar topology under crossed polarizers. The video speed is 10× faster than the real observation. The concentration of R811 in RM-OC2 is 0.5 wt%. The thickness of the homemade cell is 3.2 μm. The image size is 200 μm × 200 μm.

Supplementary Video 2

PLM observation of the electric response of the toroidal polar topology. The video speed is 16x faster than the real observation. A square-wave electric field of E = ±4 × 10−3 V μm−1 and field-periodicity of 240 s is applied in the horizontal direction. When switching off the d.c. field, the polarization field returns to equilibrium in the initial state. The image size is 420 μm × 420 μm.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Zou, Y., Li, J. et al. Flexoelectricity-driven toroidal polar topology in liquid-matter helielectrics. Nat. Phys. (2024). https://doi.org/10.1038/s41567-024-02439-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41567-024-02439-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing