Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Gain-induced topological response via tailored long-range interactions

Abstract

The ability to tailor the hopping interactions between the constituent elements of a physical system could enable the observation of unusual phenomena that are otherwise inaccessible in standard settings1,2. In this regard, a number of recent theoretical studies have indicated that an asymmetry in either the short- or long-range complex exchange constants can lead to counterintuitive effects, for example, the possibility of a Kramer’s degeneracy, even in the absence of spin 1/2 or the breakdown of the bulk–boundary correspondence3,4,5,6,7,8. Here we show how such tailored asymmetric interactions can be realized in photonic integrated platforms by exploiting non-Hermitian concepts, enabling a class of topological behaviours induced by optical gain. As a demonstration, we implement the Haldane model, a canonical lattice that relies on asymmetric long-range hopping to exhibit quantum Hall behaviour without a net external magnetic flux. The topological response observed in this lattice is a result of gain and vanishes in a passive but otherwise identical structure. Our findings not only enable the realization of a wide class of non-trivial phenomena associated with tailored interactions, but also open up avenues to study the role of gain and nonlinearity in topological systems in the presence of quantum noise.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Haldane crystal model.
Fig. 2: The photonic topological Haldane lattice.
Fig. 3: Experimental results for two-element and three-element subunits.
Fig. 4: Topological Haldane lattice experimental results.

Similar content being viewed by others

Data availability

Data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request. Source data are provided with this paper.

References

  1. Haldane, F. D. M. Model for a quantum Hall effect without Landau levels: condensed-matter realization of the ‘parity anomaly’. Phys. Rev. Lett. 61, 2015–2018 (1988).

    ADS  Google Scholar 

  2. Ferraretto, M. & Salasnich, L. Effects of long-range hopping in the Bose–Hubbard model. Phys. Rev. A 99, 013618 (2019).

    ADS  Google Scholar 

  3. Joyner, C. H., Müller, S. & Sieber, M. GSE statistics without spin. Europhys. Lett. 107, 50004 (2014).

    ADS  Google Scholar 

  4. Rehemanjiang, A., Richter, M., Kuhl, U. & Stöckmann, H.-J. Microwave realization of the chiral orthogonal, unitary and symplectic ensembles. Phys. Rev. Lett. 124, 116801 (2020).

    ADS  Google Scholar 

  5. Hatano, N. & Nelson, D. R. Localization transitions in non-Hermitian quantum mechanics. Phys. Rev. Lett. 77, 570–573 (1996).

    ADS  Google Scholar 

  6. Lee, T. E. Anomalous edge state in a non-Hermitian lattice. Phys. Rev. Lett. 116, 133903 (2016).

    ADS  Google Scholar 

  7. Gong, Z. et al. Topological phases of non-Hermitian systems. Phys. Rev. X 8, 031079 (2018).

    Google Scholar 

  8. Yao, S. & Wang, Z. Edge states and topological invariants of non-Hermitian systems. Phys. Rev. Lett. 121, 086803 (2018).

    ADS  Google Scholar 

  9. Dudin, Y. O. & Kuzmich, A. Strongly interacting Rydberg excitations of a cold atomic gas. Science 336, 887–889 (2012).

    ADS  Google Scholar 

  10. Kane, C. L. & Mele, E. J. Quantum spin Hall effect in graphene. Phys. Rev. Lett. 95, 226801 (2005).

    ADS  Google Scholar 

  11. Bernevig, B. A. & Zhang, S.-C. Quantum spin Hall effect. Phys. Rev. Lett. 96, 106802 (2006).

    ADS  Google Scholar 

  12. Konig, M. et al. Quantum spin Hall insulator state in HgTe quantum wells. Science 318, 766–770 (2007).

    ADS  Google Scholar 

  13. Moore, J. E. & Balents, L. Topological invariants of time-reversal-invariant band structures. Phys. Rev. B 75, 121306 (2007).

    ADS  Google Scholar 

  14. Hsieh, D. et al. A topological Dirac insulator in a quantum spin Hall phase. Nature 452, 970–974 (2008).

    ADS  Google Scholar 

  15. Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    ADS  Google Scholar 

  16. Qi, X.-L. & Zhang, S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).

    ADS  Google Scholar 

  17. Rem, B. S. et al. Identifying quantum phase transitions using artificial neural networks on experimental data. Nat. Phys. 15, 917–920 (2019).

    Google Scholar 

  18. Jotzu, G. et al. Experimental realization of the topological Haldane model with ultracold fermions. Nature 515, 237–240 (2014).

    ADS  Google Scholar 

  19. Haldane, F. D. M. & Raghu, S. Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. Phys. Rev. Lett. 100, 013904 (2008).

    ADS  Google Scholar 

  20. Wang, Z., Chong, Y., Joannopoulos, J. D. & Soljačić, M. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 461, 772–775 (2009).

    ADS  Google Scholar 

  21. Hafezi, M., Demler, E. A., Lukin, M. D. & Taylor, J. M. Robust optical delay lines with topological protection. Nat. Phys. 7, 907–912 (2011).

    Google Scholar 

  22. Rechtsman, M. C. et al. Photonic Floquet topological insulators. Nature 496, 196–200 (2013).

    ADS  Google Scholar 

  23. Jörg, C., Letscher, F., Fleischhauer, M. & von Freymann, G. Dynamic defects in photonic Floquet topological insulators. New J. Phys. 19, 083003 (2017).

    ADS  Google Scholar 

  24. Khanikaev, A. B. et al. Photonic topological insulators. Nat. Mater. 12, 233–239 (2013).

    ADS  Google Scholar 

  25. Hafezi, M., Mittal, S., Fan, J., Migdall, A. & Taylor, J. M. Imaging topological edge states in silicon photonics. Nat. Photon. 7, 1001–1005 (2013).

    ADS  Google Scholar 

  26. Bahari, B. et al. Nonreciprocal lasing in topological cavities of arbitrary geometries. Science 358, 636–640 (2017).

    ADS  Google Scholar 

  27. Harari, G. et al. Topological insulator laser: theory. Science 359, eaar4003 (2018).

    Google Scholar 

  28. Bandres, M. A. et al. Topological insulator laser: experiments. Science 359, eaar4005 (2018).

    Google Scholar 

  29. Zeng, Y. et al. Electrically pumped topological laser with valley edge modes. Nature 578, 246–250 (2020).

    ADS  Google Scholar 

  30. Ozawa, T., Price, H. M., Goldman, N., Zilberberg, O. & Carusotto, I. Synthetic dimensions in integrated photonics: from optical isolation to four-dimensional quantum Hall physics. Phys. Rev. A 93, 043827 (2016).

    ADS  Google Scholar 

  31. Lustig, E. et al. Photonic topological insulator in synthetic dimensions. Nature 567, 356–360 (2019).

    ADS  Google Scholar 

  32. Dutt, A. et al. A single photonic cavity with two independent physical synthetic dimensions. Science 367, 59–64 (2020).

    Article  ADS  Google Scholar 

  33. Fang, K., Yu, Z. & Fan, S. Realizing effective magnetic field for photons by controlling the phase of dynamic modulation. Nat. Photon. 6, 782–787 (2012).

    ADS  Google Scholar 

  34. Umucalılar, R. O. & Carusotto, I. Artificial gauge field for photons in coupled cavity arrays. Phys. Rev. A 84, 043804 (2011).

    ADS  Google Scholar 

  35. Kraus, Y. E., Lahini, Y., Ringel, Z., Verbin, M. & Zilberberg, O. Topological states and adiabatic pumping in quasicrystals. Phys. Rev. Lett. 109, 106402 (2012).

    ADS  Google Scholar 

  36. El-Ganainy, R. et al. Non-Hermitian physics and PT symmetry. Nat. Phys. 14, 11–19 (2018).

    Google Scholar 

  37. Hayenga, W. E. et al. Direct generation of tunable orbital angular momentum beams in microring lasers with broadband exceptional points. ACS Photonics 6, 1895–1901 (2019).

    Google Scholar 

  38. Johnson, S. G. et al. Elimination of cross talk in waveguide intersections. Opt. Lett. 23, 1855–1857 (1998).

    ADS  Google Scholar 

  39. Bogaerts, W., Dumon, P., Thourhout, D. V. & Baets, R. Low-loss, low-cross-talk crossings for silicon-on-insulator nanophotonic waveguides. Opt. Lett. 32, 2801–2803 (2007).

    ADS  Google Scholar 

  40. Ren, J. et al. Unidirectional light emission in PT-symmetric microring lasers. Opt. Express 26, 27153–27160 (2018).

    ADS  Google Scholar 

  41. Liu, Y. G. N. et al. Engineering interaction dynamics in active resonant photonic structures. Preprint at https://arxiv.org/abs/2102.03917 (2021).

  42. Parto, M. et al. Edge-mode lasing in 1D topological active arrays. Phys. Rev. Lett. 120, 113901 (2018).

    ADS  Google Scholar 

  43. Hodaei, H., Miri, M.-A., Heinrich, M., Christodoulides, D. N. & Khajavikhan, M. Parity-time-symmetric microring lasers. Science 346, 975–978 (2014).

    ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by DARPA (D18AP00058), the Office of Naval Research (N00014-20-1-2522, N00014-20-1-2789, N00014-16-1-2640, N00014-18-1-2347 and N00014-19-1-2052), the Army Research Office (W911NF-17-1-0481), the Air Force Office of Scientific Research (FA9550-14-1-0037 and FA9550-20-1-0322), the National Science Foundation (CBET 1805200, ECCS 2000538, ECCS 2011171), the US–Israel Binational Science Foundation (BSF; 2016381) and the Polish Ministry of Science and Higher Education (Mobility Plus, 1654/MOB/V/2017). Y.G.N.L. thanks the following individuals for their support: A. U. Hassan in design and analysis, F. O. Wu in analysis, W. E. Hayenga in characterization and fabrication, O. Hemmatyar in analysis and graphics, and M. P. Hokmabadi in design and fabrication. The fan-shaped couplers are named after F. O. Wu. D.N.C. and M.K. acknowledge the technical discussions with M. Segev.

Author information

Authors and Affiliations

Authors

Contributions

Y.G.N.L., D.N.C. and M.K. conceived the idea. Y.G.N.L. designed the structures and experiments. Y.G.N.L. fabricated and characterized the lattices and sublattices. Y.G.N.L., P.S.J. and M.P. performed the simulations. Y.G.N.L., P.S.J., M.P., D.N.C. and M.K. developed the theoretical analysis. All authors contributed to preparing the manuscript.

Corresponding authors

Correspondence to Demetrios N. Christodoulides or Mercedeh Khajavikhan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Physics thanks Shuang Zhang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Schematic of a two-element system with unidirectional microring resonators and a link structure.

The directional couplers provide a π phase difference between the coupling terms κ1→2 and κ2→1. The coupling phase kL can be changed by varying the length L = 2Lc + Lm.

Extended Data Fig. 2 Schematics and dimensions of the waveguides, resonators, fan-shape constructs and the link.

a, The triangular microring resonator. b, The fan-shaped structure to be incorporated in the triangular resonators. c, The perimeters of two adjacent resonators are denoted by LA and LB. d, Transverse electric field distribution in a single waveguide. The black arrows indicate the electric field vector.

Extended Data Fig. 3 Schematic of the fabrication procedure of microring lasers.

a, HSQ e-beam resist is spun onto the wafer. b, The wafer is patterned by e-beam lithography. c, A dry etching process to define the rings. d, The sample is immersed in BOE to remove the masking HSQ. e, A 2 μm layer of SiO2 is deposited via PECVD. f, The wafer is flipped upside-down and bonded to a glass substrate by SU-8 photoresist to provide mechanical support. g, Lastly, the InP substrate is wet etched by HCl.

Extended Data Fig. 4 Schematic of the μ-PL characterization set-up.

The microrings are pumped by a pulsed laser (15 ns pulse width, 290 kHz repetition rate). The pump beam is focused onto the sample with a 10× objective, this objective in turns also collects the emission from the samples. Light is then either directed to a linear array detector for spectral measurements or to an IR camera for intensity profile observation.

Supplementary information

Supplementary Information

Supplementary materials.

Source data

Source Data Fig. 3

Normalized data for spectra in Fig. 3b–d.

Source Data Fig. 4

Normalized data for spectra in Fig. 4h,l.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y.G.N., Jung, P.S., Parto, M. et al. Gain-induced topological response via tailored long-range interactions. Nat. Phys. 17, 704–709 (2021). https://doi.org/10.1038/s41567-021-01185-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-021-01185-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing