Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Super-stealth dicing of transparent solids with nanometric precision

Abstract

Laser cutting of semiconductor wafers and transparent dielectrics has become a dominant process in manufacturing industries, encompassing a wide range of applications from display panels to microelectronic chips. Constrained by the diffraction limit of the beam width and the longitudinal extent of the laser focus, a trade-off between the cutting accuracy and the aspect ratio is inherent to conventional laser processing, with the accuracy typically approaching one micrometre and the aspect ratio of the order of 100. Here we propose a method to circumvent this limitation. Our method exploits a mechanism of back-scattering interference crawling in which the incident beam interferes with light that is back-scattered by laser-induced nanoseeds, creating a positive feedback loop. This mechanism ensures both homogenization of longitudinal energy deposition and confinement of lateral subwavelength light during laser–matter interactions. We achieve cutting widths in the range of tens of nanometres with aspect ratios ranging from 1,000 to 10,000. We refer to this technique as ‘super-stealth dicing’ and we validate it through numerical simulations. The technique can be applied to various transparent functional solids, such as glass, laser crystals and ferroelectric and semiconductor materials, thus promising enhanced precision for future advanced laser dicing, patterning and drilling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mechanism of back-scattering interference crawling.
Fig. 2: Transition from separated nanoseeds to nanoline.
Fig. 3: Self-regulatory formation of nanolines and free-form nanodicing via SSD.
Fig. 4: General applicability of SSD technology.
Fig. 5: Drilling of specific shapes via SSD.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable requests.

References

  1. Adams, C. M. & Hardway, G. A. Fundamentals of laser beam machining and drilling. IEEE Trans. Ind. Gen. Appl. 2, 90–96 (1965).

    Article  Google Scholar 

  2. Kerse, C. et al. Ablation-cooled material removal with ultrafast bursts of pulses. Nature 537, 84–88 (2016).

    Article  ADS  Google Scholar 

  3. Park, M., Gu, Y., Mao, X., Grigoropoulos, C. P. & Zorba, V. Mechanisms of ultrafast GHz burst fs laser ablation. Sci. Adv. 9, eadf6397 (2023).

    Article  Google Scholar 

  4. Öktem, B. et al. Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses. Nat. Photonics 7, 897–901 (2013).

    Article  ADS  Google Scholar 

  5. Tokel, O. et al. In-chip microstructures and photonic devices fabricated by nonlinear laser lithography deep inside silicon. Nat. Photonics 11, 639–645 (2017).

    Article  ADS  Google Scholar 

  6. Kumagai, M. et al. Advanced dicing technology for semiconductor wafer—stealth dicing. IEEE Trans. Semicond. Manuf. 20, 259–265 (2007).

    Article  Google Scholar 

  7. Malinauskas, M. et al. Ultrafast laser processing of materials: from science to industry. Light Sci. Appl. 5, e16133 (2016).

    Article  Google Scholar 

  8. Novotny, L. & Hecht, B. Principles of Nano-Optics (Cambridge Univ. Press, 2012).

  9. Indebetouw, G. Nondiffracting optical fields: some remarks on their analysis and synthesis. J. Opt. Soc. Am. A 6, 150–152 (1989).

    Article  ADS  Google Scholar 

  10. Durnin, J., Miceli, J. J. & Eberly, J. H. Diffraction-free beams. Phys. Rev. Lett. 58, 1499–1501 (1987).

    Article  ADS  Google Scholar 

  11. Bialynicki-Birula, I. & Bialynicka-Birula, Z. Heisenberg uncertainty relations for photons. Phys. Rev. A 86, 022118 (2012).

    Article  ADS  Google Scholar 

  12. McCutchen, C. W. Generalized aperture and the three-dimensional diffraction image. J. Opt. Soc. Am. 54, 240–244 (1964).

    Article  ADS  Google Scholar 

  13. Betzig, E. & Trautman, J. K. Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit. Science 257, 189–195 (1992).

    Article  ADS  Google Scholar 

  14. Li, Z.-Z. et al. O-FIB: far-field-induced near-field breakdown for direct nanowriting in an atmospheric environment. Light Sci. Appl. 9, 41 (2020).

    Article  ADS  Google Scholar 

  15. Yan, Z., Gao, J., Beresna, M. & Zhang, J. Near-field mediated 40 nm in-volume glass fabrication by femtosecond laser. Adv. Opt. Mater. 10, 2101676 (2022).

    Article  Google Scholar 

  16. Lei, Y. et al. High speed ultrafast laser anisotropic nanostructuring by energy deposition control via near-field enhancement. Optica 8, 1365–1371 (2021).

    Article  ADS  Google Scholar 

  17. Plech, A., Leiderer, P. & Boneberg, J. Femtosecond laser near field ablation. Laser Photonics Rev. 3, 435–451 (2009).

    Article  ADS  Google Scholar 

  18. Wu, H. et al. Photonic nanolaser with extreme optical field confinement. Phys. Rev. Lett. 129, 013902 (2022).

    Article  ADS  Google Scholar 

  19. Liu, H., Lin, W. & Hong, M. Hybrid laser precision engineering of transparent hard materials: challenges, solutions and applications. Light Sci. Appl. 10, 162 (2021).

    Article  ADS  Google Scholar 

  20. Bhuyan, M. K. et al. Ultrafast laser nanostructuring in bulk silica, a ‘slow’ microexplosion. Optica 4, 951–958 (2017).

    Article  ADS  Google Scholar 

  21. Jiang, L., Wang, A.-D., Li, B., Cui, T.-H. & Lu, Y.-F. Electrons dynamics control by shaping femtosecond laser pulses in micro/nanofabrication: modeling, method, measurement and application. Light Sci. Appl. 7, 17134 (2018).

    Article  Google Scholar 

  22. Chanal, M. et al. Crossing the threshold of ultrafast laser writing in bulk silicon. Nat. Commun. 8, 773 (2017).

    Article  ADS  Google Scholar 

  23. Wang, A. et al. Burst mode enabled ultrafast laser inscription inside gallium arsenide. Int. J. Extrem. Manuf. 4, 045001 (2022).

  24. Götte, N. et al. Temporal Airy pulses for controlled high aspect ratio nanomachining of dielectrics. Optica 3, 389–395 (2016).

    Article  ADS  Google Scholar 

  25. Liu, X., Clady, R., Grojo, R., Utéza, O. & Sanner, N. Engraving depth-controlled nanohole arrays on fused silica by direct short-pulse laser ablation. Adv. Mater. Interfaces 10, 2202189 (2023).

  26. Juodkazis, S. et al. Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures. Phys. Rev. Lett. 96, 166101 (2006).

    Article  ADS  Google Scholar 

  27. Bellouard, Y. et al. Stress-state manipulation in fused silica via femtosecond laser irradiation. Optica 3, 1285–1293 (2016).

    Article  ADS  Google Scholar 

  28. Tan, D., Zhang, B. & Qiu, J. Ultrafast laser direct writing in glass: thermal accumulation engineering and applications. Laser Photonics Rev. 15, 2000455 (2021).

    Article  ADS  Google Scholar 

  29. Flamm, D. et al. Structured light for ultrafast laser micro- and nanoprocessing. Opt. Eng. 60, 025105 (2021).

    Article  ADS  Google Scholar 

  30. Salter, P. S. & Booth, M. J. Adaptive optics in laser processing. Light Sci. Appl. 8, 110 (2019).

    Article  ADS  Google Scholar 

  31. Meyer, R. et al. Single-shot ultrafast laser processing of high-aspect-ratio nanochannels using elliptical Bessel beams. Opt. Lett. 42, 4307–4310 (2017).

    Article  ADS  Google Scholar 

  32. Velpula, P. K. et al. Spatio-temporal dynamics in nondiffractive Bessel ultrafast laser nanoscale volume structuring. Laser Photonics Rev. 10, 230–244 (2016).

    Article  ADS  Google Scholar 

  33. Mahmoud Aghdami, K., Rahnama, A., Ertorer, E. & Herman, P. R. Laser nano-filament explosion for enabling open-grating sensing in optical fibre. Nat. Commun. 12, 6344 (2021).

    Article  ADS  Google Scholar 

  34. Couairon, A. & Mysyrowicz, A. Femtosecond filamentation in transparent media. Phys. Rep. 441, 47–189 (2007).

    Article  ADS  Google Scholar 

  35. Motoyoshi, M. Through-silicon via (TSV). Proc. IEEE 97, 43–48 (2009).

    Article  Google Scholar 

  36. Sugioka, K. & Cheng, Y. Ultrafast lasers—reliable tools for advanced materials processing. Light Sci. Appl. 3, e149 (2014).

    Article  ADS  Google Scholar 

  37. Kawata, S., Sun, H.-B., Tanaka, T. & Takada, K. Finer features for functional microdevices. Nature 412, 697–698 (2001).

    Article  ADS  Google Scholar 

  38. Lin, Z., Liu, H., Ji, L., Lin, W. & Hong, M. Realization of ~10 nm features on semiconductor surfaces via femtosecond laser direct patterning in far field and in ambient air. Nano Lett. 20, 4947–4952 (2020).

    Article  ADS  Google Scholar 

  39. Rapp, L. et al. High aspect ratio micro-explosions in the bulk of sapphire generated by femtosecond Bessel beams. Sci. Rep. 6, 34286 (2016).

    Article  ADS  Google Scholar 

  40. Li, Z., Allegre, O. & Li, L. Realising high aspect ratio 10 nm feature size in laser materials processing in air at 800 nm wavelength in the far-field by creating a high purity longitudinal light field at focus. Light Sci. Appl. 11, 339 (2022).

    Article  ADS  Google Scholar 

  41. Meyer, R. et al. Extremely high-aspect-ratio ultrafast Bessel beam generation and stealth dicing of multi-millimeter thick glass. Appl. Phys. Lett. 114, 201105 (2019).

    Article  ADS  Google Scholar 

  42. Bellouard, Y., Said, A., Dugan, M. & Bado, P. Fabrication of high-aspect ratio, micro-fluidic channels and tunnels using femtosecond laser pulses and chemical etching. Opt. Express 12, 2120–2129 (2004).

    Article  ADS  Google Scholar 

  43. Ródenas, A. et al. Three-dimensional femtosecond laser nanolithography of crystals. Nat. Photonics 13, 105–109 (2019).

    Article  ADS  Google Scholar 

  44. Meyer, R., Giust, R., Jacquot, M., Dudley, J. M. & Courvoisier, F. Submicron-quality cleaving of glass with elliptical ultrafast Bessel beams. Appl. Phys. Lett. 111, 231108 (2017).

    Article  ADS  Google Scholar 

  45. Stoian, R. Volume photoinscription of glasses: three-dimensional micro- and nanostructuring with ultrashort laser pulses. Appl. Phys. A 126, 438 (2020).

    Article  ADS  Google Scholar 

  46. Lancry, M. et al. Ultrafast nanoporous silica formation driven by femtosecond laser irradiation. Laser Photonics Rev. 7, 953–962 (2013).

    Article  ADS  Google Scholar 

  47. Xu, Q., Almeida, V. R., Panepucci, R. R. & Lipson, M. Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material. Opt. Lett. 29, 1626–1628 (2004).

    Article  ADS  Google Scholar 

  48. Hentschel, M. et al. Dielectric Mie voids: confining light in air. Light Sci. Appl. 12, 3 (2023).

    Article  ADS  Google Scholar 

  49. Zhang, J. et al. Ultra-wide bandgap semiconductor Ga2O3 power diodes. Nat. Commun. 13, 3900 (2022).

    Article  ADS  Google Scholar 

  50. Liang, Z., Wu, J., Cui, Y., Sun, H. & Ning, C.-Z. Self-optimized single-nanowire photoluminescence thermometry. Light Sci. Appl. 12, 36 (2023).

    Article  ADS  Google Scholar 

  51. Sander, T. H. et al. Magnetoencephalography with a chip-scale atomic magnetometer. Biomed. Opt. Express 3, 981–990 (2012).

    Article  Google Scholar 

  52. Delgoffe, A., Nazir, S., Hakobyan, S., Hönninger, C. & Bellouard, Y. All-glass miniature GHz repetition rate femtosecond laser cavity. Optica 10, 1269–1279 (2023).

    Article  ADS  Google Scholar 

  53. Rahim, K. & Mian, A. A review on laser processing in electronic and MEMS packaging. J. Electron. Packag. 139, 030801 (2017).

    Article  Google Scholar 

  54. Sugioka, K. et al. Femtosecond laser 3D micromachining: a powerful tool for the fabrication of microfluidic, optofluidic, and electrofluidic devices based on glass. Lab Chip 14, 3447–3458 (2014).

    Article  Google Scholar 

  55. Chambonneau, M. et al. In-volume laser direct writing of silicon—challenges and opportunities. Laser Photonics Rev. 15, 2100140 (2021).

  56. Li, L., Kong, W. & Chen, F. Femtosecond laser-inscribed optical waveguides in dielectric crystals: a concise review and recent advances. Adv. Photonics 4, 024002 (2022).

    Article  ADS  Google Scholar 

  57. Buschlinger, R., Nolte, S. & Peschel, U. Self-organized pattern formation in laser-induced multiphoton ionization. Phys. Rev. B 89, 184306 (2014).

    Article  ADS  Google Scholar 

  58. Déziel, J.-L., Dubé, L. J. & Varin, C. Dynamical rate equation model for femtosecond laser-induced breakdown in dielectrics. Phys. Rev. B 104, 045201 (2021).

    Article  ADS  Google Scholar 

  59. Garcia-Lechuga, M. et al. Simultaneous time–space resolved reflectivity and interferometric measurements of dielectrics excited with femtosecond laser pulses. Phys. Rev. B 95, 214114 (2017).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (NSFC) under grant numbers 61825502, 61960206003, 61827826 and 62175086, the Key Research and Development Program of Shandong Province 2021CXGC010201 grant and the Natural Science Foundation of Jilin Province 20220101107JC grant. S.J. is grateful for the Australian Research Council DP240103231 grant. Z.-Z.L. would like to thank X.-B. Li, Y.-T. Huang, J.-C. Zhang and F. Yu for their valuable discussions. Z.-Z.L. thanks Z.-W. Ma and H.-L. Zhang for their assistance with the AFM measurements. Z.-Z.L. acknowledges Y. Lei and L.-Y. Zhao for their support in conducting the tests on sapphire waveplates.

Author information

Authors and Affiliations

Authors

Contributions

Z.-Z.L., H.F., L.W., S.J. and H.-B.S. conceived the experiments. Z.-Z.L., H.F., X.Z. and X.-J.Z. carried out the experiments. Z.-Z.L. and H.F. performed the numerical simulations. Z.-Z.L., L.W., H.F., Q.-D.C., S.J. and H.-B.S. analysed the data and calculated the results. X.-J.W. measured the fluorescence spectra. H.F., Y.-H.Y., Y.-S.X., Y.W. and Z.-Z.L. developed and improved the fabrication system. L.W., Q.-D.C., S.J. and H.-B.S. supervised the whole project. Z.-Z.L. and H.-B.S. wrote the initial draught, and all authors contributed to the final paper.

Corresponding authors

Correspondence to Lei Wang, Saulius Juodkazis, Qi-Dai Chen or Hong-Bo Sun.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Fatih Ilday and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–65, Sections 1–12, Tables 1–7 and refs. 1–73.

Supplementary Video 1

Schematic of the back-scattering interference crawling mechanism.

Supplementary Video 2

Schematic of polarization-controlled nanodicing via SSD.

Supplementary Video 3

Theoretical calculation of normalized optical intensity during back-scattering interference crawling.

Supplementary Video 4

Beam deflection of 90° achieved by total reflection from the bevelled edge of a YAG right-angle prism.

Supplementary Video 5

Optical microscope observation of a laser-cut fused silica microrod.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, ZZ., Fan, H., Wang, L. et al. Super-stealth dicing of transparent solids with nanometric precision. Nat. Photon. (2024). https://doi.org/10.1038/s41566-024-01437-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41566-024-01437-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing