Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Epsilon-near-zero regime enables permanent ultrafast all-optical reversal of ferroelectric polarization

Abstract

Strong light–matter interaction constitutes the bedrock of all photonic applications, empowering material elements with the ability to create and mediate interactions of light with light. Amidst the quest to identify new agents facilitating such efficient light–matter interactions, a class of promising materials has emerged, featuring highly unusual properties deriving from their dielectric constant ε being equal, or at least very close, to zero. Works so far have shown that the enhanced nonlinear optical effects displayed in this epsilon-near-zero (ENZ) regime make it possible to create ultrafast albeit transient optical switches. An outstanding question, however, relates to whether one could use the amplification of light–matter interactions at the ENZ conditions to achieve permanent switching. Here we demonstrate that an ultrafast excitation under ENZ conditions can induce permanent all-optical reversal of ferroelectric polarization between different stable states. Our reliance on ENZ conditions that naturally emerge from the solid’s ionic lattice suggests that the demonstrated mechanism of reversal is truly universal, being capable of permanently switching order parameters in a wide variety of systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Light-induced switching of polarization.
Fig. 2: Importance of satisfying the ENZ condition for switching.
Fig. 3: Schematic explanation of the switching process.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the article and its Supplementary Information. Additional data can be obtained from the authors upon a reasonable request. Source Data are provided with this paper.

References

  1. Scott, J. F. Applications of modern ferroelectrics. Science 315, 954–959 (2007).

    Article  ADS  Google Scholar 

  2. Sharma, P. et al. Nonvolatile ferroelectric domain wall memory. Sci. Adv. 3, e1700512 (2017).

    Article  ADS  Google Scholar 

  3. Jiang, J. et al. Temporary formation of highly conducting domain walls for non-destructive read-out of ferroelectric domain-wall resistance switching memories. Nat. Mater. 17, 49–56 (2018).

    Article  ADS  Google Scholar 

  4. Petritz, A. et al. Imperceptible energy harvesting device and biomedical sensor based on ultraflexible ferroelectric transducers and organic diodes. Nat. Commun. 12, 2399 (2021).

    Article  ADS  Google Scholar 

  5. Chanthbouala, A. et al. A ferroelectric memristor. Nat. Mater. 11, 860–864 (2012).

    Article  ADS  Google Scholar 

  6. Wei, X. et al. Progress on emerging ferroelectric materials for energy harvesting, storage and conversion. Adv. Energy Mater. 12, 2201199 (2022).

    Article  Google Scholar 

  7. Tagantsev, A.K., Cross, L.E. & Fousek, J. Domains in Ferroic Crystals and Thin Films (Springer, 2010).

  8. Fiebig, M., Lottermoser, T., Meier, D. & Trassin, M. The evolution of multiferroics. Nat. Rev. Mater. 1, 16046 (2016).

    Article  ADS  Google Scholar 

  9. von Hippel, A. Ferroelectricity, domain structure, and phase transitions of barium titanate. Rev. Mod. Phys. 22, 221–237 (1950).

    Article  ADS  Google Scholar 

  10. Harada, J., Pedersen, T. & Barnea, Z. X-ray and neutron diffraction study of tetragonal barium titanate. Acta Cryst. A 26, 336–344 (1970).

    Article  Google Scholar 

  11. Merz, W. J. Domain formation and domain wall motions in ferroelectric BaTiO3 single crystals. Phys. Rev. 95, 690–698 (1954).

    Article  ADS  Google Scholar 

  12. Servoin, J. L., Gervais, F., Quittet, A. M. & Luspin, Y. Infrared and Raman responses in ferroelectric perovskite crystals: apparent inconsistencies. Phys. Rev. B 21, 2038–2041 (1980).

    Article  ADS  Google Scholar 

  13. Huang, Z. et al. Temperature dependence of BaTiO3 infrared dielectric properties. Appl. Phys. Lett. 88, 212902 (2006).

    Article  ADS  Google Scholar 

  14. Ashcroft, N. W. & Mermin, N. D. Solid State Physics Vol. 848 (Cengage Learning, 1976).

  15. Kinsey, N., DeVault, C., Boltasseva, A. & Shalaev, V. M. Near-zero-index materials for photonics. Nat Rev Mater 4, 742–760 (2019).

    Article  ADS  Google Scholar 

  16. Alam, M. Z., De Leon, I. & Boyd, R. W. Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region. Science 352, 795–797 (2016).

    Article  ADS  Google Scholar 

  17. Smith, D. R., Pendry, J. B. & Wiltshire, M. C. K. Metamaterials and negative refractive index. Science 305, 788–792 (2004).

    Article  ADS  Google Scholar 

  18. Reshef, O., De Leon, I., Alam, M. Z. & Boyd, R. W. Nonlinear optical effects in epsilon-near-zero media. Nat Rev Mater 4, 535–551 (2019).

    Article  Google Scholar 

  19. Murdin, B. N. Far-infrared free-electron lasers and their applications. Contemp. Phys. 50, 391 (2009).

    Article  ADS  Google Scholar 

  20. Jaroszynski, D. A. et al. Experimental observation of limit-cycle oscillations in a short-pulse free-electron laser. Phys. Rev. Lett. 70, 3412–3415 (1993).

    Article  ADS  Google Scholar 

  21. Janssen, T. et al. Cavity-dumping a single infrared pulse from a free-electron laser for two-color pump-probe experiments. Rev. Sci. Instrum. 93, 043007 (2022).

    Article  Google Scholar 

  22. Liberal, I. & Engheta, N. Near-zero refractive index photonics. Nat. Photon. 11, 149–158 (2017).

    Article  ADS  Google Scholar 

  23. Kinsey, N. & Khurgin, J. Nonlinear epsilon-near-zero materials explained: opinion. Opt. Mater. Express 9, 2793–2796 (2019).

    Article  ADS  Google Scholar 

  24. Fahy, S. & Merlin, R. Reversal of ferroelectric domains by ultrashort optical pulses. Phys. Rev. Lett. 73, 1122–1125 (1994).

    Article  ADS  Google Scholar 

  25. Subedi, A. Proposal for ultrafast switching of ferroelectrics using midinfrared pulses. Phys. Rev. B 92, 214303 (2015).

    Article  ADS  Google Scholar 

  26. Subedi, A., Cavalleri, A. & Georges, A. Theory of nonlinear phononics for coherent light control of solids. Phys. Rev. B 89, 220301 (2014).

    Article  ADS  Google Scholar 

  27. Mankowsky, R., von Hoegen, A., Först, M. & Cavalleri, A. Ultrafast reversal of the ferroelectric polarization. Phys. Rev. Lett. 118, 197601 (2017).

    Article  ADS  Google Scholar 

  28. Ciattoni, A. et al. Enhanced nonlinear effects in pulse propagation through epsilon-near-zero media. Laser Photon. Rev. 10, 517–525 (2016).

    Article  ADS  Google Scholar 

  29. Xu, Z. & Arnoldus, H. F. Reflection by and transmission through an ENZ interface. OSA Continuum 2, 722–735 (2019).

    Article  Google Scholar 

  30. Arnoldus, H. F. Penetration of dipole radiation into an ENZ medium. Opt. Commun. 489, 126867 (2021).

    Article  Google Scholar 

  31. Khalsa, G., Benedek, N. A. & Moses, J. Ultrafast control of material optical properties via the infrared resonant Raman effect. Phys. Rev. X 11, 021067 (2021).

    Google Scholar 

  32. Stupakiewicz, A. et al. Ultrafast phononic switching of magnetization. Nat. Phys. 17, 489–492 (2021).

    Article  Google Scholar 

  33. Stremoukhov, P. et al. Phononic manipulation of antiferromagnetic domains in NiO. New J. Phys. 24, 023009 (2022).

    Article  ADS  Google Scholar 

  34. Sones, C. L. et al. Ultraviolet laser-induced sub-micron periodic domain formation in congruent undoped lithium niobate crystals. Appl. Phys. B 80, 341–344 (2005).

    Article  ADS  Google Scholar 

  35. Steigerwald, H. et al. Direct writing of ferroelectric domains on the x-and y-faces of lithium niobate using a continuous wave ultraviolet laser. Appl. Phys. Lett. 98, 062902 (2011).

    Article  ADS  Google Scholar 

  36. Xu, X. et al. Femtosecond laser writing of lithium niobate ferroelectric nanodomains. Nature 609, 496–501 (2022).

    Article  ADS  Google Scholar 

  37. Yang, M.-M. & Alexe, M. Light-induced reversible control of ferroelectric polarization in BiFeO3. Adv. Mater. 30, 1704908 (2018).

    Article  Google Scholar 

  38. Back, C. H. et al. Magnetization reversal in ultrashort magnetic field pulses. Phys. Rev. Lett. 81, 3251 (1998).

    Article  ADS  Google Scholar 

  39. Vlasov, V. S. et al. Magnetization switching in bistable nanomagnets by picosecond pulses of surface acoustic waves. Phys. Rev. B 101, 024425 (2020).

    Article  ADS  Google Scholar 

  40. Denev, S. A. et al. Probing ferroelectrics using optical second harmonic generation. J. Am. Ceram. Soc. 94, 2699–2727 (2011).

    Article  Google Scholar 

  41. Uesu, Y., Kurimura, S. & Yamamoto, Y. Optical second harmonic images of 90° domain structure in BaTiO3 and periodically inverted antiparallel domains in LiTaO3. Appl. Phys. Lett. 66, 2165–2167 (1995).

    Article  ADS  Google Scholar 

  42. Zgonik, M. et al. Dielectric, elastic, piezoelectric, electro-optic, and elasto-optic tensors of BaTiO3 crystals. Phys. Rev. B 50, 5941–5949 (1994).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge A.K. Tagantsev for useful discussions and thank the technical staff at FELIX for providing technical support. We thank J. van Eeten for his experimental contributions. D.G.L. acknowledges funding by the Max Planck–Radboud University Center for Infrared Free Electron Laser Spectroscopy. A.K., M.K. and C.S.D. acknowledge funding by the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (Netherlands Organisation for Scientific Research). C.S.D. acknowledges support from the European Research Council ERC grant agreement no. 101115234 (HandShake).

Author information

Authors and Affiliations

Authors

Contributions

A.K. conceived the project. M.K. and D.G.L. performed the measurements. C.S.D. assisted in building the experimental set-up. A.K, M.K and C.S.D. wrote the paper. All authors were involved in discussing the results.

Corresponding author

Correspondence to A. Kirilyuk.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Roman Mankowsky, Vasily Temnov and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Supplementary Discussion 1–7, Figs. 1–9 and References.

Supplementary Data 1–9

Source Data of supplementary files ordered by Supplementary Figure.

Source data

Source Data

Raw data of images used in Fig. 1; Fig. 2 data points of switching lengths used in graph; and code to calculate electric displacement field shown in Fig. 3c.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwaaitaal, M., Lourens, D.G., Davies, C.S. et al. Epsilon-near-zero regime enables permanent ultrafast all-optical reversal of ferroelectric polarization. Nat. Photon. (2024). https://doi.org/10.1038/s41566-024-01420-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41566-024-01420-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing