Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Integrated vortex soliton microcombs

Abstract

Synergistic control of the frequency and orbital angular momentum (OAM) of light offers new opportunities for the generation of spatio-temporal optical waveforms and optical metrology. However, their physical realizations are typically bulky and complex owing to challenges in creating, manipulating and detecting mutually coherent, high-dimensional OAM states. Here we achieve combined control over the frequency and the OAM of a comb structure on a photonic chip. Dissipative optical solitons are formed in a nonlinear ring microresonator and emitted owing to engraved angular gratings, with each comb line carrying a distinct OAM. The beam of such a vortex soliton microcomb manifests dynamically revolving, double-helical intensity profiles. The one-to-one correspondence between the OAM and frequencies features a high extinction ratio of over 18.5 dB, enabling precision spectroscopy of optical vortices. Our work provides an integrated solution for realizing coherent light sources that are multiplexed in the spatial and frequency domains, with the potential to establish a new approach to the generation of high-dimensional structured light.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Vortex soliton microcomb.
Fig. 2: Si3N4 microresonator vortex emitter.
Fig. 3: Spectral characteristics of the vortex soliton microcomb.
Fig. 4: Spatio-temporal characteristics of vortex soliton microcombs.
Fig. 5: Vortex spectroscopy.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available via figshare at https://doi.org/10.6084/m9.figshare.24782970.

Code availability

The code used in this study is available via figshare at https://doi.org/10.6084/m9.figshare.24782970.

References

  1. Diddams, S. A., Vahala, K. & Udem, T. Optical frequency combs: coherently uniting the electromagnetic spectrum. Science 369, eaay3676 (2020).

    Article  Google Scholar 

  2. Picqué, N. & Hänsch, T. W. Frequency comb spectroscopy. Nat. Photon. 13, 146–157 (2019).

    Article  ADS  Google Scholar 

  3. Allen, L., Beijersbergen, M. W., Spreeuw, R. J. C. & Woerdman, J. P. Orbital angular momentum of light and the transformation of laguerre-gaussian laser modes. Phys. Rev. A 45, 8185–8189 (1992).

    Article  ADS  Google Scholar 

  4. Yao, A. M. & Padgett, M. J. Orbital angular momentum: origins, behavior and applications. Adv. Opt. Photon. 3, 161–204 (2011).

    Article  Google Scholar 

  5. Ni, J. et al. Multidimensional phase singularities in nanophotonics. Science 374, eabj0039 (2021).

    Article  Google Scholar 

  6. Fickler, R. et al. Quantum entanglement of high angular momenta. Science 338, 640–643 (2012).

    Article  ADS  Google Scholar 

  7. Huang, C. et al. Ultrafast control of vortex microlasers. Science 367, 1018–1021 (2020).

    Article  ADS  Google Scholar 

  8. Chong, A., Wan, C., Chen, J. & Zhan, Q. Generation of spatiotemporal optical vortices with controllable transverse orbital angular momentum. Nat. Photon. 14, 350–354 (2020).

    Article  ADS  Google Scholar 

  9. Zhao, Z. et al. Dynamic spatiotemporal beams that combine two independent and controllable orbital-angular-momenta using multiple optical-frequency-comb lines. Nat. Commun. 11, 4099 (2020).

    Article  ADS  Google Scholar 

  10. Paterson, L. et al. Controlled rotation of optically trapped microscopic particles. Science 292, 912–914 (2001).

    Article  ADS  Google Scholar 

  11. Lavery, M. P., Speirits, F. C., Barnett, S. M. & Padgett, M. J. Detection of a spinning object using light’s orbital angular momentum. Science 341, 537–540 (2013).

    Article  ADS  Google Scholar 

  12. Bozinovic, N. et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science 340, 1545–1548 (2013).

    Article  ADS  Google Scholar 

  13. Fürhapter, S., Jesacher, A., Bernet, S. & Ritsch-Marte, M. Spiral phase contrast imaging in microscopy. Opt. Express 13, 689–694 (2005).

    Article  ADS  Google Scholar 

  14. Tamburini, F., Anzolin, G., Umbriaco, G., Bianchini, A. & Barbieri, C. Overcoming the Rayleigh criterion limit with optical vortices. Phys. Rev. Lett. 97, 163903 (2006).

    Article  ADS  Google Scholar 

  15. He, C., Shen, Y. & Forbes, A. Towards higher-dimensional structured light. Light Sci. Appl. 11, 205 (2022).

    Article  ADS  Google Scholar 

  16. Wan, C., Cao, Q., Chen, J., Chong, A. & Zhan, Q. Toroidal vortices of light. Nat. Photon. 16, 519–522 (2022).

    Article  ADS  Google Scholar 

  17. Cruz-Delgado, D. et al. Synthesis of ultrafast wavepackets with tailored spatiotemporal properties. Nat. Photon. 16, 686–691 (2022).

    ADS  Google Scholar 

  18. Miao, P. et al. Orbital angular momentum microlaser. Science 353, 464–467 (2016).

    Article  ADS  Google Scholar 

  19. Zhang, Z. et al. Tunable topological charge vortex microlaser. Science 368, 760–763 (2020).

    Article  ADS  Google Scholar 

  20. Sroor, H. et al. High-purity orbital angular momentum states from a visible metasurface laser. Nat. Photon. 14, 498–503 (2020).

    Article  ADS  Google Scholar 

  21. Ji, Z. et al. Photocurrent detection of the orbital angular momentum of light. Science 368, 763–767 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  22. Cai, X. et al. Integrated compact optical vortex beam emitters. Science 338, 363–366 (2012).

    Article  ADS  Google Scholar 

  23. Lu, X. et al. Highly-twisted states of light from a high quality factor photonic crystal ring. Nat. Commun. 14, 1119 (2023).

    Article  ADS  Google Scholar 

  24. Herr, T. et al. Temporal solitons in optical microresonators. Nat. Photon. 8, 145–152 (2014).

    Article  ADS  Google Scholar 

  25. Yi, X., Yang, Q.-F., Yang, K. Y., Suh, M.-G. & Vahala, K. Soliton frequency comb at microwave rates in a high-Q silica microresonator. Optica 2, 1078–1085 (2015).

    Article  ADS  Google Scholar 

  26. Brasch, V. et al. Photonic chip–based optical frequency comb using soliton Cherenkov radiation. Science 351, 357–360 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  27. Gong, Z. et al. High-fidelity cavity soliton generation in crystalline AlN micro-ring resonators. Opt. Lett. 43, 4366–4369 (2018).

    Article  ADS  Google Scholar 

  28. He, Y. et al. Self-starting bi-chromatic LiNbO3 soliton microcomb. Optica 6, 1138–1144 (2019).

    Article  ADS  Google Scholar 

  29. Moille, G. et al. Dissipative Kerr solitons in a III–V microresonator. Laser Photon. Rev. 14, 2000022 (2020).

    Article  ADS  Google Scholar 

  30. Guidry, M. A., Lukin, D. M., Yang, K. Y., Trivedi, R. & Vučković, J. Quantum optics of soliton microcombs. Nat. Photon. 16, 52–58 (2022).

    Article  ADS  Google Scholar 

  31. Kippenberg, T. J., Gaeta, A. L., Lipson, M. & Gorodetsky, M. L. Dissipative Kerr solitons in optical microresonators. Science 361, eaan8083 (2018).

    Article  Google Scholar 

  32. Pinnell, J. et al. Modal analysis of structured light with spatial light modulators: a practical tutorial. J. Opt. Soc. Am. A 37, C146–C160 (2020).

    Article  Google Scholar 

  33. Yu, S.-P. et al. Spontaneous pulse formation in edgeless photonic crystal resonators. Nat. Photon. 15, 461–467 (2021).

    Article  ADS  Google Scholar 

  34. Lucas, E., Yu, S.-P., Briles, T. C., Carlson, D. R. & Papp, S. B. Tailoring microcombs with inverse-designed, meta-dispersion microresonators. Nat. Photon. 17, 943–950 (2023).

    Article  ADS  Google Scholar 

  35. Li, H., Bazarov, I. V., Dunham, B. M. & Wise, F. W. Three-dimensional laser pulse intensity diagnostic for photoinjectors. Phys. Rev. ST Accel. Beams 14, 112802 (2011).

    Article  ADS  Google Scholar 

  36. Yang, Q.-F., Yi, X., Yang, K. Y. & Vahala, K. Spatial-mode-interaction-induced dispersive-waves and their active tuning in microresonators. Optica 3, 1132–1135 (2016).

    Article  ADS  Google Scholar 

  37. Pariente, G. & Quéré, F. Spatio-temporal light springs: extended encoding of orbital angular momentum in ultrashort pulses. Opt. Lett. 40, 2037–2040 (2015).

    Article  ADS  Google Scholar 

  38. Béjot, P. & Kibler, B. Spatiotemporal helicon wavepackets. ACS Photon. 8, 2345–2354 (2021).

    Article  Google Scholar 

  39. Chen, L. et al. Synthesizing ultrafast optical pulses with arbitrary spatiotemporal control. Sci. Adv. 8, eabq8314 (2022).

    Article  ADS  Google Scholar 

  40. Piccardo, M. et al. Broadband control of topological–spectral correlations in space–time beams. Nat. Photon. 17, 822–828 (2023).

    Article  ADS  Google Scholar 

  41. Chen, S. et al. Demonstration of 20-Gbit/s high-speed Bessel beam encoding/decoding link with adaptive turbulence compensation. Opt. Lett. 41, 4680–4683 (2016).

    Article  ADS  Google Scholar 

  42. Hadad, B. et al. Particle trapping and conveying using an optical archimedes’ screw. Optica 5, 551–556 (2018).

    Article  ADS  Google Scholar 

  43. Zhao, J. et al. Curved singular beams for three-dimensional particle manipulation. Sci. Rep. 5, 12086 (2015).

    Article  ADS  Google Scholar 

  44. Suh, M.-G., Yang, Q.-F., Yang, K. Y., Yi, X. & Vahala, K. J. Microresonator soliton dual-comb spectroscopy. Science 354, 600–603 (2016).

    Article  ADS  Google Scholar 

  45. Dutt, A. et al. On-chip dual-comb source for spectroscopy. Sci. Adv. 4, e1701858 (2018).

    Article  ADS  Google Scholar 

  46. Yang, Q.-F. et al. Vernier spectrometer using counterpropagating soliton microcombs. Science 363, 965–968 (2019).

    Article  ADS  Google Scholar 

  47. Forbes, A., de Oliveira, M. & Dennis, M. R. Structured light. Nat. Photon. 15, 253–262 (2021).

    Article  ADS  Google Scholar 

  48. Barreiro, J. T., Langford, N. K., Peters, N. A. & Kwiat, P. G. Generation of hyperentangled photon pairs. Phys. Rev. Lett. 95, 260501 (2005).

    Article  ADS  Google Scholar 

  49. Dos Santos, B. C., Dechoum, K. & Khoury, A. Continuous-variable hyperentanglement in a parametric oscillator with orbital angular momentum. Phys. Rev. Lett. 103, 230503 (2009).

    Article  Google Scholar 

  50. Xie, Z. et al. Harnessing high-dimensional hyperentanglement through a biphoton frequency comb. Nat. Photon. 9, 536–542 (2015).

    Article  ADS  Google Scholar 

  51. Jin, W. et al. Hertz-linewidth semiconductor lasers using CMOS-ready ultra-high-Q microresonators. Nat. Photon. 15, 346–353 (2021).

    Article  ADS  Google Scholar 

  52. Xiang, C. et al. Laser soliton microcombs heterogeneously integrated on silicon. Science 373, 99–103 (2021).

    Article  ADS  Google Scholar 

  53. Marin-Palomo, P. et al. Microresonator-based solitons for massively parallel coherent optical communications. Nature 546, 274–279 (2017).

    Article  ADS  Google Scholar 

  54. Jørgensen, A. et al. Petabit-per-second data transmission using a chip-scale microcomb ring resonator source. Nat. Photon. 16, 798–802 (2022).

    Article  ADS  Google Scholar 

  55. Feldmann, J. et al. Parallel convolutional processing using an integrated photonic tensor core. Nature 589, 52–58 (2021).

    Article  ADS  Google Scholar 

  56. Xu, X. et al. 11 TOPS photonic convolutional accelerator for optical neural networks. Nature 589, 44–51 (2021).

    Article  ADS  Google Scholar 

  57. Chang, L., Liu, S. & Bowers, J. E. Integrated optical frequency comb technologies. Nat. Photon. 16, 95–108 (2022).

    Article  ADS  Google Scholar 

  58. Lu, X., McClung, A. & Srinivasan, K. High-Q slow light and its localization in a photonic crystal microring. Nat. Photon. 16, 66–71 (2022).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge Z. Zhang for helpful discussion. This work is supported by National Key R&D Plan of China (grant nos. 2021YFB2800601 and 2018YFA0704404), Beijing Natural Science Foundation (no. Z210004), and National Natural Science Foundation of China (nos. 92150108, 12293051, 62035017, 62175002, 92150301, 11825402, 62222515, 91950118, 12174438, 11834001 and 61905012).

Author information

Authors and Affiliations

Authors

Contributions

The project was conceived by W.L. and Q.-F.Y. Experiments were designed and performed by Y.L., C.L., W.L. and Q.-F.Y., with assistance from S.F., C.G. and J.W. Devices were designed by Y.L. and C.L., and were fabricated by C.L. with assistance from M.W., Y.C., Y.W. and B.-B.L. Analysis of results was conducted by Y.L., C.L., W.L. and Q.-F.Y. The project was supervised by Q.G., Y.-F.X., W.L. and Q.-F.Y. All authors participated in writing the paper.

Corresponding authors

Correspondence to Yun-Feng Xiao, Wenjing Liu or Qi-Fan Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Marco Piccardo and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Design of the angular gratings.

a, Illustration showing the grating design. The electric fields of the doublets are shown in the lower panel. b-c, Simulated frequency splittings and Q of TE fundamental modes as a function of grating parameters. d-e, Simulated frequency splittings and Q of TM fundamental modes as a function of grating parameters. f-g, Transmitted spectra of typical TE and TM modes. Their intrinsic Q factors are also indicated.

Extended Data Fig. 2 Purity of vortex emission.

Measured power of emitted OAM components in LHCP from each mode using modal decomposition.

Extended Data Fig. 3 Measurement of the vortex microcomb.

a, Experimental setup. EDFA: erbium-doped fiber amplifier; PC: polarization controller; FBG: fiber Bragg grating; BS: beam splitter; COL: collimator; QWP: quarter-wave plate; Pol: Polarizer; OSA: optical spectrum analyzer. The inset shows the real-space emission of the microresonator. b, Unfiltered vortex beams (i), filtered vortex beams (ii), Gaussian beams (iii), and interference patterns of the filtered vortex beams and Gaussian beams (iv). The 3 images on the right panel are the zoom-in of the white dotted box in (i). The sensitivities of the CCD are identical for all images in b.

Extended Data Fig. 4 Measurement of the beam profile.

a, Experimental setup. ND filter: neutral-density filter. b, Schematic illustration of the transformation process from vortex solitons to Gaussian solitons using a spatial filter in the real space.

Supplementary information

Supplementary Information

Numerical Simulations: ‘Simulation of mode splitting’, ‘Simulation of soliton states’ and ‘Profiles of the vortex emission’. Additional experimental results: ‘Comparison between mode-locked and mode-unlocked vortex microcombs’, ‘Two-soliton vortex microcomb’ and ‘Vortex spectroscopy’.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Lao, C., Wang, M. et al. Integrated vortex soliton microcombs. Nat. Photon. (2024). https://doi.org/10.1038/s41566-024-01418-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41566-024-01418-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing