Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Integrated optical vortex microcomb

Abstract

The exploration of physical degrees of freedom of light with infinite dimensionality, such as orbital angular momentum (OAM) and frequency, has profoundly reshaped the landscape of modern optics, with representative photonic functional devices including optical vortex emitters and frequency combs. In nanophotonics, whispering gallery mode microresonators naturally support applications based on the OAM of light and have been employed as on-chip emitters of monochromatic optical vortices. On the other hand, whispering gallery mode microresonators can serve as a highly efficient non-linear optical platform for producing light at different frequencies, that is, microcombs. Here we combine optical vortices and microcombs by demonstrating an optical vortex comb on a III–V integrated non-linear ring microresonator. The angular grating-dressed non-linear microring simultaneously emits spatiotemporal light springs consisting of 50 OAM modes, with each frequency of the microcomb carrying a distinct OAM value. We also experimentally generate optical pulses with time-varying OAM by carefully endowing the spatiotemporal light springs with a specific intermodal phase relation. We expect our work to favour the development of integrated non-linear and quantum photonics for exploring fundamental optical physics and advancing photonic quantum technology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A schematic showing the generation of self-torque pulses from the vortex microcomb.
Fig. 2: Characterizations of the AlGaAsOI microring.
Fig. 3: Characterizations of the vortex frequency microcomb.
Fig. 4: Synthesis of self-torque pulses using vortex microcombs in soliton states.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available via figshare at https://doi.org/10.6084/m9.figshare.24771078 (ref. 39). All other data used in this study are available from the corresponding authors on reasonable request.

References

  1. Allen, L., Beijersbergen, M. W., Spreeuw, R. J. C. & Woerdman, J. P. Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes. Phys. Rev. A 45, 8185–8189 (1992).

    Article  ADS  Google Scholar 

  2. He, C., Shen, Y. & Forbes, A. Towards higher-dimensional structured light. Light Sci. Appl. 11, 1–17 (2022).

    Article  Google Scholar 

  3. Wang, J. et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photon. 6, 488–496 (2012).

    Article  ADS  Google Scholar 

  4. Erhard, M., Fickler, R., Krenn, M. & Zeilinger, A. Twisted photons: new quantum perspectives in high dimensions. Light Sci. Appl. 7, 17146 (2018).

    Article  Google Scholar 

  5. Cai, X. et al. Integrated compact optical vortex beam emitters. Science 338, 363–366 (2012).

    Article  ADS  Google Scholar 

  6. Ren, H. et al. Metasurface orbital angular momentum holography. Nat. Commun. 10, 1–8 (2019).

    Article  ADS  Google Scholar 

  7. Sroor, H. et al. High-purity orbital angular momentum states from a visible metasurface laser. Nat. Photon. 14, 498–503 (2020).

    Article  ADS  Google Scholar 

  8. Zhou, N. et al. Ultra-compact broadband polarization diversity orbital angular momentum generator with 3.6 × 3.6 μm2 footprint. Sci. Adv. 5, eaau9593 (2019).

    Article  ADS  Google Scholar 

  9. Chen, B. et al. Bright solid-state sources for single photons with orbital angular momentum. Nat. Nanotechnol. 16, 302–307 (2021).

    Article  ADS  Google Scholar 

  10. Ma, Y. et al. On-chip spin-orbit locking of quantum emitters in 2D materials for chiral emission. Optica 9, 953–958 (2022).

    Article  ADS  Google Scholar 

  11. Miao, P. et al. Orbital angular momentum microlaser. Science 353, 464–467 (2016).

    Article  ADS  Google Scholar 

  12. Hayenga, W. E. et al. Direct generation of tunable orbital angular momentum beams in microring lasers with broadband exceptional points. ACS Photonics 6, 1895–1901 (2019).

    Article  Google Scholar 

  13. Zhang, Z. et al. Tunable topological charge vortex microlaser. Science 368, 760–763 (2020).

    Article  ADS  Google Scholar 

  14. Chang, L., Liu, S. & Bowers, J. E. Integrated optical frequency comb technologies. Nat. Photon. 16, 95–108 (2022).

    Article  ADS  Google Scholar 

  15. Gaeta, A. L., Lipson, M. & Kippenberg, T. J. Photonic-chip-based frequency combs. Nat. Photon. 13, 158–169 (2019).

    Article  ADS  Google Scholar 

  16. Pfeiffer, M. H. et al. Ultra-smooth silicon nitride waveguides based on the damascene reflow process: fabrication and loss origins. Optica 5, 884–892 (2018).

    Article  ADS  Google Scholar 

  17. Puckett, M. W. et al. 422 million intrinsic quality factor planar integrated all-waveguide resonator with sub-MHz linewidth. Nat. Commun. 12, 1–8 (2021).

    Article  Google Scholar 

  18. Pu, M., Ottaviano, L., Semenova, E. & Yvind, K. Efficient frequency comb generation in AlGaAs-on-insulator. Optica 3, 823–826 (2016).

    Article  ADS  Google Scholar 

  19. Chang, L. et al. Ultra-efficient frequency comb generation in AlGaAs-on-insulator microresonators. Nat. Commun. 11, 1331 (2020).

    Article  ADS  Google Scholar 

  20. Shen, Y. et al. Roadmap on spatiotemporal light fields. J. Opt. 25, 093001 (2023).

    Article  ADS  Google Scholar 

  21. Zhao, Z. et al. Dynamic spatiotemporal beams that combine two independent and controllable orbital-angular-momenta using multiple optical-frequency-comb lines. Nat. Commun. 11, 1–10 (2020).

    ADS  Google Scholar 

  22. Chong, A., Wan, C., Chen, J. & Zhan, Q. Generation of spatiotemporal optical vortices with controllable transverse orbital angular momentum. Nat. Photon. 14, 350–354 (2020).

    Article  ADS  Google Scholar 

  23. Wan, C., Cao, Q., Chen, J., Chong, A. & Zhan, Q. Toroidal vortices of light. Nat. Photon. 16, 519–522 (2022).

    Article  ADS  Google Scholar 

  24. Zdagkas, A. et al. Observation of toroidal pulses of light. Nat. Photon. 16, 523–528 (2022).

    Article  ADS  Google Scholar 

  25. Chen, L. et al. Synthesizing ultrafast optical pulses with arbitrary spatiotemporal control. Sci. Adv. 8, eabq8314 (2022).

    Article  ADS  Google Scholar 

  26. Rego, L. et al. Generation of extreme-ultraviolet beams with time-varying orbital angular momentum. Science 364, eaaw9486 (2019).

    Article  ADS  Google Scholar 

  27. Lu, X. et al. Highly-twisted states of light from a high quality factor photonic crystal ring. Nat. Commun. 14, 1119 (2023).

    Article  ADS  Google Scholar 

  28. Pariente, G. & Quéré, F. Spatio-temporal light springs: extended encoding of orbital angular momentum in ultrashort pulses. Opt. Lett. 40, 2037–2040 (2015).

    Article  ADS  Google Scholar 

  29. Béjot, P. & Kibler, B. Spatiotemporal helicon wavepackets. ACS Photonics 8, 2345–2354 (2021).

    Article  Google Scholar 

  30. Piccardo, M. et al. Broadband control of topological-spectral correlations in space-time beams. Nat. Photon. 17, 822–828 (2023).

    Article  ADS  Google Scholar 

  31. Rañada, A. F. & Vázquez, L. On the self-torque on an extended classical charged particle. J. Phys. A 17, 2011 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  32. Dolan, S. R. et al. Gravitational self-torque and spin precession in compact binaries. Phys. Rev. D 89, 064011 (2014).

    Article  ADS  Google Scholar 

  33. Helgason, Ó. B. et al. Surpassing the nonlinear conversion efficiency of soliton microcombs. Nat. Photon. 17, 992–999 (2023).

    Article  ADS  Google Scholar 

  34. Dada, A. C. et al. Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities. Nat. Phys. 7, 677–680 (2011).

    Article  Google Scholar 

  35. Hu, X. M. et al. High-dimensional Bell test without detection loophole. Phys. Rev. Lett. 129, 060402 (2022).

    Article  ADS  Google Scholar 

  36. Liu, J. et al. Emerging material platforms for integrated microcavity photonics. Sci. China Phys. Mech. Astron. 65, 104201 (2022).

    Article  ADS  Google Scholar 

  37. Li, H., Bazarov, I. V., Dunham, B. M. & Wise, F. W. Three-dimensional laser pulse intensity diagnostic for photoinjectors. Phys. Rev. ST Accel. Beams 14, 112802 (2011).

    Article  ADS  Google Scholar 

  38. Zhu, J. et al. Spin and orbital angular momentum and their conversion in cylindrical vector vortices. Opt. Lett. 39, 4435–4438 (2014).

    Article  ADS  Google Scholar 

  39. Chen, B. et al. Integrated optical vortex microcomb. figshare https://doi.org/10.6084/m9.figshare.24771078 (2024).

Download references

Acknowledgements

This research is supported by the National Key R&D Program of China (2021YFA1400800), VILLUM FONDEN (VIL50469), European Research Council (REFOCUS 853522), the National Natural Science Foundation of China (62035017, 12361141824, 12334017, 12293052, 12104522, 92050202, 61975243 and 12104309), the Natural Science Foundation of Guangdong (2022A1515011400), Guangdong Introducing Innovative and Entrepreneurial Teams of ‘The Pearl River Talent Recruitment Program’ (2021ZT09X044), the Danish National Research Foundation, SPOC (DNRF123), NanoPhoton (DNRF147), European Union’s Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie Grant Agreement (861097), the Guangdong Special Support Program (2019JC05X397), the Shanghai Science and Technology Committee (19060502500) and the Shanghai Sailing Program (21YF1431500). We thank Y. Chen, J. Liu and S. Yu for loaning equipment.

Author information

Authors and Affiliations

Authors

Contributions

J. Liu conceived the project. B.C., Y. Zhou and Q.C. performed the numerical simulations. Y. Zhou, C.Y. and Y.L. fabricated the devices. B.C., P.H., Jin Li, Y.L., C.Y., Jiaqi Li, Y. Zhang and Y. Zhou built the setup and characterized the devices. B.C., P.H., Y.L., C.Y., Y. Zhou, C.K., Y. Zheng, Q.C., Q.Z., M.P. and J. Liu analysed the data. M.P. and J. Liu wrote the paper with inputs from all authors. C.D., L.K.O., K.Y., Q.Z., X.W., M.P. and J. Liu supervised the project.

Corresponding authors

Correspondence to Qiwen Zhan, Xuehua Wang, Minhao Pu or Jin Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Noise characterizations for microcomb states.

(a, b) show the representative microcomb spectra in a noisy state (a) and a soliton state (b). (c, d) show the corresponding RF spectra for different comb states (red). The blue traces show the reference traces recorded with no comb being generated. The increased power below 1 GHz (the red trace in (c)) suggests a noisy comb state.

Extended Data Fig. 2 Mode decomposition of the vortex microcomb.

(a) Schematic of the experimental setup for the OAM mode purity measurement. OL: the objective lens, BFP: the back focal plane, HWP: half-wave plate, P: polarizer, SLM: spatial light modulator, M: mirror, L1 - L2: lenses, CCD: charge-coupled device. (b, e) Measured on-axis intensity distributions for the linearly polarized component of the emitted superposition mode with l = 4 and l = -4. (c, f) Phase distributions applied to the SLM. (d, g) Measured far-field patterns for the linearly polarized component of the superposition mode. (h) OAM spectrum for frequency OAM modes from l = -5 to l = 9.

Extended Data Fig. 3 Simulation of the self-torque pules with the different CW/CCW compositions.

(a-e) Simulations for the single-helices self-torque pulses. (f-j) Simulations for the double-helices pulses. (c) and (h) are the results presented in Fig. 4 which employes the values extracted from the mode decomposition measurement in 2.

Supplementary information

Supplementary Information

Supplementary Figs. 1–10 and Discussion.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, B., Zhou, Y., Liu, Y. et al. Integrated optical vortex microcomb. Nat. Photon. (2024). https://doi.org/10.1038/s41566-024-01415-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41566-024-01415-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing