Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Size-dependent lanthanide energy transfer amplifies upconversion luminescence quantum yields

Subjects

Abstract

Optical upconversion from lanthanide-doped nanoparticles is promising for a variety of applications ranging from bioimaging, optogenetics, nanothermometry, super-resolution nanoscopy and volumetric displays to solar cells. Despite remarkable progress made in enhancing upconversion to fuel these applications, achieving luminescence of upconversion nanoparticles (UCNPs) that is comparable to or higher than the bulk counterparts has been challenging due to nanoscale-induced quenching effects. Here we demonstrate a size-dependent lanthanide energy transfer effect in a conceptual design of hexagonal sodium yttrium fluoride (NaYF4) core–shell–shell NaYF4@NaYF4:Yb/Tm@NaYF4 UCNPs with depleted surface quenching. We show that precise control over the domain size (or the thickness of the middle shell doped with ytterbium (Yb) and thulium (Tm) from 1.2 to 13 nm) increases the lanthanide energy transfer efficiency (from 30.2 to 50.4%) and amplifies the upconversion quantum yield to a high value of 13.0 ± 1.3% in sub-50 nm UCNPs (excitation: 980 nm, 100 W cm−2), which is around fourfold higher than the micrometre-scale hexagonal NaYF4:Yb/Tm bulk counterparts. Spectroscopic studies and theoretical microscopic modelling reveal that long-range lanthanide energy transfer (>9.5 nm) takes place and underlies the observed size-dependent phenomena. Demonstration of size-dependent lanthanide energy transfer and upconversion quantum yields at the nanoscale transforms our long-existing conceptual understanding of lanthanide energy transfer (size independence), thereby having important implications for applications of lanthanide nanophotonics and biophotonics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Characterization of the as-synthesized core–shell–shell NaYF4@NaYF4:Yb/Tm@NaYF4 nanostructure.
Fig. 2: Optical upconversion in the designated core–shell–shell nanostructure with a tunable intermediate shell layer thickness.
Fig. 3: The d-value-related UCQYs.
Fig. 4: Observation of d-dependent lanthanide energy transfer in the designated core–shell–shell nanostructure.
Fig. 5: Microscopic simulation of d-dependent UCQYs.
Fig. 6: The d-dependent UCQYs using Er as the activator.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request. Source data are provided with this paper.

Code availability

All codes used in this paper are available from the corresponding author upon reasonable request.

References

  1. Auzel, F. Upconversion and anti-Stokes processes with f and d ions in solids. Chem. Rev. 104, 139–174 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Chen, G., Ågren, H., Ohulchanskyy, T. Y. & Prasad, P. N. Light upconverting core–shell nanostructures: nanophotonic control for emerging applications. Chem. Soc. Rev. 44, 1680–1713 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Xie, Y. et al. Lanthanide-doped heterostructured nanocomposites toward advanced optical anti-counterfeiting and information storage. Light Sci. Appl. 11, 150 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  4. Francés-Soriano, L., Estebanez, N., Pérez-Prieto, J. & Hildebrandt, N. DNA-coated upconversion nanoparticles for sensitive nucleic acid FRET biosensing. Adv. Funct. Mater. 32, 2201541 (2022).

    Article  Google Scholar 

  5. Fernandez-Bravo, A. et al. Continuous-wave upconverting nanoparticle microlasers. Nat. Nanotechnol. 13, 572–577 (2018).

    Article  CAS  PubMed  ADS  Google Scholar 

  6. Chen, G. et al. (α-NaYbF4:Tm3+)/CaF2 core/shell nanoparticles with efficient near-infrared to near-infrared upconversion for high-contrast deep tissue bioimaging. ACS Nano 6, 8280–8287 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Liu, Y. et al. Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy. Nature 543, 229–233 (2017).

    Article  CAS  PubMed  ADS  Google Scholar 

  8. Wu, X. et al. Dye-sensitized core/active shell upconversion nanoparticles for optogenetics and bioimaging applications. ACS Nano 10, 1060–1066 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Deng, R. et al. Temporal full-colour tuning through non-steady-state upconversion. Nat. Nanotechnol. 10, 237–242 (2015).

    Article  CAS  PubMed  ADS  Google Scholar 

  10. Richards, B. S., Hudry, D., Busko, D., Turshatov, A. & Howard, I. A. Photon upconversion for photovoltaics and photocatalysis: a critical review. Chem. Rev. 121, 9165–9195 (2021).

    Article  CAS  PubMed  Google Scholar 

  11. Krämer, K. W. et al. Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors. Chem. Mater. 16, 1244–1251 (2004).

    Article  Google Scholar 

  12. Fan, Y., Liu, L. & Zhang, F. Exploiting lanthanide-doped upconversion nanoparticles with core/shell structures. Nano Today 25, 68–84 (2019).

    Article  CAS  Google Scholar 

  13. Zhang, Y., Lei, P., Zhu, X. & Zhang, Y. Full shell coating or cation exchange enhances luminescence. Nat. Commun. 12, 6178 (2021).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  14. Zhou, B. et al. Enhancing multiphoton upconversion through interfacial energy transfer in multilayered nanoparticles. Nat. Commun. 11, 1174 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  15. Feng, W., Sun, L. D. & Yan, C. H. Ag nanowires enhanced upconversion emission of NaYF4:Yb,Er nanocrystals via a direct assembly method. Chem. Commun. 29, 4393–4395 (2009).

    Article  Google Scholar 

  16. Zhan, Q., Zhang, X., Zhao, Y., Liu, J. & He, S. Tens of thousands-fold upconversion luminescence enhancement induced by a single gold nanorod. Laser Photonics Rev. 9, 479–487 (2015).

    Article  CAS  ADS  Google Scholar 

  17. Meng, Y. J. et al. Bright single-nanocrystal upconversion at sub 0.5 W cm−2 irradiance via coupling to single nanocavity mode. Nat. Photonics 17, 73–81 (2023).

    Article  CAS  ADS  Google Scholar 

  18. Chen, G. et al. Energy-cascaded upconversion in an organic dye-sensitized core/shell fluoride nanocrystal. Nano Lett. 15, 7400–7407 (2015).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  19. Garfield, D. J. et al. Enrichment of molecular antenna triplets amplifies upconverting nanoparticle emission. Nat. Photonics 12, 402–407 (2018).

    Article  CAS  ADS  Google Scholar 

  20. Zou, W., Visser, C., Maduro, J. A., Pshenichnikov, M. S. & Hummelen, J. C. Broadband dye-sensitized upconversion of near-infrared light. Nat. Photoncs 6, 560–564 (2012).

    Article  CAS  ADS  Google Scholar 

  21. Homann, C. et al. NaYF4:Yb,Er/NaYF4 core/shell nanocrystals with high upconversion luminescence quantum yield. Angew. Chem. Int. Ed. 57, 8765–8769 (2018).

    Article  CAS  Google Scholar 

  22. Feng, Y. et al. Internal OH induced cascade quenching of upconversion luminescence in NaYF4:Yb/Er nanocrystals. Light Sci. Appl. 10, 105 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  23. Zhao, J. et al. Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence. Nat. Nanotechnol. 8, 729–734 (2013).

    Article  CAS  PubMed  ADS  Google Scholar 

  24. García de Arquer, F. P. et al. Semiconductor quantum dots: technological progress and future challenges. Science 373, eaaz8541 (2021).

    Article  PubMed  Google Scholar 

  25. Dreaden, E. C., Alkilany, A. M., Huang, X., Murphy, C. J. & El-Sayed, M. A. The golden age: gold nanoparticles for biomedicine. Chem. Soc. Rev. 41, 2740–2779 (2012).

    Article  CAS  PubMed  Google Scholar 

  26. Liu, G. Advances in the theoretical understanding of photon upconversion in rare-earth activated nanophosphors. Chem. Soc. Rev. 44, 1635–1652 (2015).

    Article  CAS  PubMed  ADS  Google Scholar 

  27. Macedo, A. G. et al. Effects of phonon confinement on anomalous thermalization, energy transfer, and upconversion in Ln3+-doped Gd2O3 nanotubes. Adv. Funct. Mater. 20, 624–634 (2010).

    Article  CAS  Google Scholar 

  28. Liu, G. K., Zhuang, H. Z. & Chen, X. Y. Restricted phonon relaxation and anomalous thermalization of rare earth ions in nanocrystals. Nano Lett. 2, 535–539 (2002).

    Article  CAS  ADS  Google Scholar 

  29. Chen, X. et al. Confining energy migration in upconversion nanoparticles towards deep ultraviolet lasing. Nat. Commun. 7, 10304 (2016).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  30. Quintanilla, M. et al. Cubic versus hexagonal-phase, size and morphology effects on the photoluminescence quantum yield of NaGdF4:Er3+/Yb3+ upconverting nanoparticles. Nanoscale 14, 1492–1504 (2022).

    Article  CAS  PubMed  Google Scholar 

  31. Wang, F., Wang, J. & Liu, X. Direct evidence of a surface quenching effect on size-dependent luminescence of upconversion nanoparticles. Angew. Chem. Int. Ed. 49, 7456–7460 (2010).

    Article  CAS  Google Scholar 

  32. Johnson, N. J. et al. Direct evidence for coupled surface and concentration quenching dynamics in lanthanide-doped nanocrystals. J. Am. Chem. Soc. 139, 3275–3282 (2017).

    Article  CAS  PubMed  Google Scholar 

  33. Boyer, J. C. & van Veggel, F. C. Absolute quantum yield measurements of colloidal NaYF4: Er3+, Yb3+ upconverting nanoparticles. Nanoscale 2, 1417–1419 (2010).

    Article  CAS  PubMed  ADS  Google Scholar 

  34. Fischer, S., Bronstein, N. D., Swabeck, J. K., Chan, E. M. & Alivisatos, A. P. Precise tuning of surface quenching for luminescence enhancement in core–shell lanthanide-doped nanocrystals. Nano Lett. 16, 7241–7247 (2016).

    Article  CAS  PubMed  ADS  Google Scholar 

  35. Würth, C., Fischer, S., Grauel, B., Alivisatos, A. P. & Resch-Genger, U. Quantum yields, surface quenching, and passivation efficiency for ultrasmall core/shell upconverting nanoparticles. J. Am. Chem. Soc. 140, 4922–4928 (2018).

    Article  PubMed  Google Scholar 

  36. Jones, C. M. S., Gakamsky, A. & Marques-Hueso, J. The upconversion quantum yield (UCQY): a review to standardize the measurement methodology, improve comparability, and define efficiency standards. Sci. Technol. Adv. Mater. 22, 810–848 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Würth, C., Grabolle, M., Pauli, J., Spieles, M. & Resch-Genger, U. Relative and absolute determination of fluorescence quantum yields of transparent samples. Nat. Protoc. 8, 1535–1550 (2013).

    Article  PubMed  Google Scholar 

  38. Förster, T. 10th Spiers Memorial Lecture. Transfer mechanisms of electronic excitation. Discuss. Faraday Soc. 27, 7–17 (1959).

    Article  Google Scholar 

  39. Förster, T. Zwischenmolekulare energiewanderung und fluoreszenz. Ann. Phys. 437, 55–75 (1948).

    Article  Google Scholar 

  40. Dexter, D. L. A theory of sensitized luminescence in solids. J. Chem. Phys. 21, 836–850 (2004).

    Article  ADS  Google Scholar 

  41. Zuo, J. et al. Precisely tailoring upconversion dynamics via energy migration in core–shell nanostructures. Angew. Chem. Int. Ed. 57, 3054–3058 (2018).

    Article  CAS  Google Scholar 

  42. Hossan, M. Y. et al. Explaining the nanoscale effect in the upconversion dynamics of β-NaYF4:Yb3+, Er3+ core and core–shell nanocrystals. J. Phys. Chem. C 121, 16592–16606 (2017).

    Article  CAS  Google Scholar 

  43. Wang, F. & Liu, X. Upconversion multicolor fine-tuning: visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles. J. Am. Chem. Soc. 130, 5642–5643 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (52272270 and 51972084 to G.C.) and the Fundamental Research Funds for the Central Universities, China (AUGA5710052614 to G.C.).

Author information

Authors and Affiliations

Authors

Contributions

G.C. conceived the research; F.L. and Y.Z. prepared the UCNPs; K.W.K. synthesized the bulk upconverting materials; L.T. performed the Monte Carlo simulations; F.L. collected most of the experimental data, with contributions from X.Z., J.D., X.L., D.H. and R.F.; F.L., G.C. and L.T. discussed and interpreted the collected data; C.Y. provided valuable discussions and experimental supports; all authors contributed to the data analysis; the manuscript was written by F.L., L.T. and G.C., with comments from J.M.-H. and K.W.K.; and G.C. directed the research.

Corresponding author

Correspondence to Guanying Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Ute Resch-Genger and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Experimental procedures, instruments, measurement of UCQYs, Monte Carlo simulation, calculation of the brightness of UCNPs, supplementary figures and tables.

Source data

Source Data Figs. 1–6

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, F., Tu, L., Zhang, Y. et al. Size-dependent lanthanide energy transfer amplifies upconversion luminescence quantum yields. Nat. Photon. (2024). https://doi.org/10.1038/s41566-024-01393-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41566-024-01393-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing