Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Integrated optical memristors

Abstract

Memristors in electronics have shown the potential for a range of applications, ranging from circuit elements to neuromorphic computing. In recent years, the ability to vary the conductance of a channel in electronics has enabled in-memory computing, thus leading to substantial interest in memristors. Optical analogues will require modulation of the transmission of light in a semicontinuous and nonvolatile manner. With the proliferation of photonic computing, such an optical analogue, which involves modulating the optical response in integrated circuits while maintaining the modulated state afterwards, is being pursued using a range of functional materials. Here we review recent progress in this important and emerging aspect of photonic integrated circuits and provide an overview of the current state of the art. Optical memristors are of particular interest for applications in high-bandwidth neuromorphic computing, machine learning hardware and artificial intelligence, as these optical analogues of memristors allow for technology that combines the ultrafast, high-bandwidth communication of optics with local information processing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Optical memristive platforms for nonvolatile transmission modulation.
Fig. 2: Integration approaches to phase-change optical memristors.
Fig. 3: Comparison of the various PCMs for optical memristors.
Fig. 4: Survey of nonvolatile, waveguide-integrated optical memristor technologies.
Fig. 5: Comparison of different nonvolatile, waveguide-integrated optical memristor technologies.

Similar content being viewed by others

References

  1. Strukov, D. B., Snider, G. S., Stewart, D. R. & Williams, R. S. The missing memristor found. Nature 453, 80–83 (2008).

    Article  ADS  Google Scholar 

  2. Li, J., Li, Y., Yang, L. & Miao, X. in Memristor Computing Systems Vol. 1 (eds Chua, L. O. et al.) 141–165 (Springer, 2022).

  3. Sebastian, A., le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nat. Nanotechnol. 15, 529–544 (2020).

    Article  ADS  Google Scholar 

  4. Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nat. Rev. Mater. 7, 575–591 (2022).

    Article  ADS  Google Scholar 

  5. Gee, A., Jaafar, A. H. & Kemp, N. T. in Memristor Computing Systems Vol. 1 (eds Chua, L. O. et al.) 219–244 (Springer, 2022).

  6. Bogaerts, W. et al. Programmable photonic circuits. Nature 586, 207–216 (2020).

    Article  ADS  Google Scholar 

  7. Biryukova, V., Sharp, G. J., Klitis, C. & Sorel, M. Trimming of silicon-on-insulator ring-resonators via localized laser annealing. Opt. Express 28, 11156–11164 (2020).

    Article  ADS  Google Scholar 

  8. Jayatilleka, H. et al. Post-fabrication trimming of silicon photonic ring resonators at wafer-scale. J. Light. Technol. 39, 5083–5088 (2021).

    Article  ADS  Google Scholar 

  9. Ríos, C. et al. Ultra-compact nonvolatile phase-shifter based on electrically reprogrammable transparent phase change materials. PhotoniX 3, 26 (2022).

  10. Lian, C. et al. Photonic (computational) memories: tunable nanophotonics for data storage and computing. Nanophotonics 11, 3823–3854 (2022).

    Article  Google Scholar 

  11. Feldmann, J. et al. Integrated 256 cell photonic phase-change memory with 512-bit capacity. IEEE J. Sel. Top. Quantum Electron. 26, 1–7 (2020).

    Article  Google Scholar 

  12. Geler-Kremer, J. et al. A ferroelectric multilevel non-volatile photonic phase shifter. Nat. Photon. 16, 491–497 (2022).

    Article  ADS  Google Scholar 

  13. Ríos, C. et al. In-memory computing on a photonic platform. Sci. Adv. 5, eaau5759 (2019).

    Article  ADS  Google Scholar 

  14. Feldmann, J., Youngblood, N., Wright, C. D., Bhaskaran, H. & Pernice, W. H. P. All-optical spiking neurosynaptic networks with self-learning capabilities. Nature 569, 208–214 (2019).

    Article  ADS  Google Scholar 

  15. Feldmann, J. et al. Parallel convolutional processing using an integrated photonic tensor core. Nature 589, 52–58 (2021).

    Article  ADS  Google Scholar 

  16. Shastri, B. J. et al. Photonics for artificial intelligence and neuromorphic computing. Nat. Photon. 15, 102–114 (2021).

    Article  ADS  Google Scholar 

  17. Mehonic, A. & Kenyon, A. J. Brain-inspired computing needs a master plan. Nature 604, 255–260 (2022).

    Article  ADS  Google Scholar 

  18. Alexoudi, T., Kanellos, G. T. & Pleros, N. Optical RAM and integrated optical memories: a survey. Light Sci. Appl. 9, 91 (2020).

    Article  ADS  Google Scholar 

  19. Mao, J. Y., Zhou, L., Zhu, X., Zhou, Y. & Han, S. T. Photonic memristor for future computing: a perspective. Adv. Opt. Mater. 7, 1900766 (2019).

    Article  Google Scholar 

  20. Wuttig, M. & Yamada, N. Phase-change materials for rewriteable data storage. Nat. Mater. 6, 824–832 (2007).

    Article  ADS  Google Scholar 

  21. Pelucchi, E. et al. The potential and global outlook of integrated photonics for quantum technologies. Nat. Rev. Phys. 4, 194–208 (2022).

    Article  Google Scholar 

  22. Elshaari, A. W., Pernice, W., Srinivasan, K., Benson, O. & Zwiller, V. Hybrid integrated quantum photonic circuits. Nat. Photon. 14, 285–298 (2020).

    Article  ADS  Google Scholar 

  23. Xiang, C. et al. High-performance silicon photonics using heterogeneous integration. IEEE J. Sel. Top. Quantum Electron. 28, 1–15 (2022).

    Article  Google Scholar 

  24. Delaney, M., Zeimpekis, I., Lawson, D., Hewak, D. W. & Muskens, O. L. A new family of ultralow loss reversible phase-change materials for photonic integrated circuits: Sb2S3 and Sb2Se3. Adv. Funct. Mater. 30, 2002447 (2020).

    Article  Google Scholar 

  25. Zhang, Y. et al. Broadband transparent optical phase change materials for high-performance nonvolatile photonics. Nat. Commun. 10, 4279 (2019).

    Article  ADS  Google Scholar 

  26. Zheng, J. et al. Nonvolatile electrically reconfigurable integrated photonic switch enabled by a silicon PIN diode heater. Adv. Mater. 32, 2001218 (2020).

    Article  Google Scholar 

  27. Wu, C. et al. Programmable phase-change metasurfaces on waveguides for multimode photonic convolutional neural network. Nat. Commun. 12, 96 (2021).

    Article  ADS  Google Scholar 

  28. You, J. et al. Hybrid/integrated silicon photonics based on 2D materials in optical communication nanosystems. Laser Photon. Rev. 14, 2000239 (2020).

    Article  ADS  Google Scholar 

  29. Abel, S. et al. Large Pockels effect in micro- and nanostructured barium titanate integrated on silicon. Nat. Mater. 18, 42–47 (2019).

    Article  ADS  Google Scholar 

  30. Li, H., Liu, Q. & Li, M. Electromechanical Brillouin scattering in integrated planar photonics. APL Photonics 4, 080802 (2019).

    Article  ADS  Google Scholar 

  31. Li, T. et al. Structural phase transitions between layered indium selenide for integrated photonic memory. Adv. Mater. 34, 2108261 (2022).

    Article  Google Scholar 

  32. Bagheri, M., Poot, M., Li, M., Pernice, W. P. H. & Tang, H. X. Dynamic manipulation of nanomechanical resonators in the high-amplitude regime and non-volatile mechanical memory operation. Nat. Nanotechnol. 6, 726–732 (2011).

    Article  ADS  Google Scholar 

  33. Shen, B. et al. Reconfigurable frequency-selective resonance splitting in chalcogenide microring resonators. ACS Photonics 7, 499–511 (2020).

    Article  Google Scholar 

  34. Kuramochi, E. et al. Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip. Nat. Photon. 8, 474–481 (2014).

    Article  ADS  Google Scholar 

  35. Hopmann, E., Carnio, B. N., Firby, C. J., Shahriar, B. Y. & Elezzabi, A. Y. Nanoscale all-solid-state plasmochromic waveguide nonresonant modulator. Nano Lett. 21, 1955–1961 (2021).

    Article  ADS  Google Scholar 

  36. Song, J. F. et al. Integrated photonics with programmable non-volatile memory. Sci. Rep. 6, 22616 (2016).

    Article  ADS  Google Scholar 

  37. Grajower, M., Mazurski, N., Shappir, J. & Levy, U. Non-volatile silicon photonics using nanoscale flash memory technology. Laser Photon. Rev. 12, 1700190 (2018).

    Article  ADS  Google Scholar 

  38. Meng, J. et al. Electrical programmable multi-level non-volatile photonic random-access memory. Preprint at https://arxiv.org/abs/2203.13337 (2022).

  39. Farmakidis, N. et al. Plasmonic nanogap enhanced phase-change devices with dual electrical-optical functionality. Sci. Adv. 5, eaaw2687 (2019).

    Article  ADS  Google Scholar 

  40. Eltes, F. et al. A BaTiO3-based electro-optic pockels modulator monolithically integrated on an advanced silicon photonics platform. J. Lightwave Technol. 37, 1456–1462 (2019).

    Article  ADS  Google Scholar 

  41. Farmakidis, N. et al. Electronically reconfigurable photonic switches incorporating plasmonic structures and phase change materials. Adv. Sci. 9, 2200383 (2022).

    Article  Google Scholar 

  42. Emboras, A. et al. Nanoscale plasmonic memristor with optical readout functionality. Nano Lett. 13, 6151–6155 (2013).

    Article  ADS  Google Scholar 

  43. Tossoun, B., Sheng, X., Strachan, J. P., Liang, D. & Beausoleil, R. G. Memristor photonics. In Photonics in Switching and Computing 2021 Tu5B.3 (Optica Publishing Group, 2021).

  44. Kim, J. T., Song, J. & Ah, C. S. Optically readable waveguide-integrated electrochromic artificial synaptic device for photonic neuromorphic systems. ACS Appl. Electron. Mater. 2, 2057–2063 (2020).

    Article  Google Scholar 

  45. Zhang, Y. et al. Monolithic integration of broadband optical isolators for polarization-diverse silicon photonics. Optica 6, 473–478 (2019).

    Article  ADS  Google Scholar 

  46. Murai, T., Shoji, Y. & Mizumoto, T. Light-induced thermomagnetic recording of thin-film magnet CoFeB on silicon waveguide for on-chip magneto-optical memory. Opt. Express 30, 18054–18065 (2022).

    Article  ADS  Google Scholar 

  47. Murai, T., Shoji, Y., Nishiyama, N. & Mizumoto, T. Nonvolatile magneto-optical switches integrated with a magnet stripe array. Opt. Express 28, 31675–31685 (2020).

    Article  ADS  Google Scholar 

  48. Zhang, W., Mazzarello, R., Wuttig, M. & Ma, E. Designing crystallization in phase-change materials for universal memory and neuro-inspired computing. Nat. Rev. Mater. 4, 150–168 (2019).

    Article  ADS  Google Scholar 

  49. Kooi, B. J. & Wuttig, M. Chalcogenides by design: functionality through metavalent bonding and confinement. Adv. Mater. 32, 1908302 (2020).

    Article  Google Scholar 

  50. Ali, U. E., Modi, G., Agarwal, R. & Bhaskaran, H. Real-time nanomechanical property modulation as a framework for tunable NEMS. Nat. Commun. 13, 1464 (2022).

    Article  ADS  Google Scholar 

  51. Aryana, K. et al. Interface controlled thermal resistances of ultra-thin chalcogenide-based phase change memory devices. Nat. Commun. 12, 774 (2021).

    Article  ADS  Google Scholar 

  52. Chaudhary, K. et al. Polariton nanophotonics using phase-change materials. Nat. Commun. 10, 4487 (2019).

    Article  ADS  Google Scholar 

  53. Lu, Y. et al. Mixed-mode operation of hybrid phase-change nanophotonic circuits. Nano Lett. 17, 150–155 (2017).

    Article  ADS  Google Scholar 

  54. Chen, R. et al. Opportunities and challenges for large-scale phase-change material integrated electro-photonics. ACS Photonics 9, 3181–3195 (2022).

    Article  Google Scholar 

  55. Abdollahramezani, S. et al. Tunable nanophotonics enabled by chalcogenide phase-change materials. Nanophotonics 9, 1189–1241 (2020).

    Article  Google Scholar 

  56. Zhang, Y. et al. Myths and truths about optical phase change materials: a perspective. Appl. Phys. Lett. 118, 210501 (2021).

    Article  ADS  Google Scholar 

  57. Rios, C. et al. Integrated all-photonic non-volatile multi-level memory. Nat. Photon. 9, 725–732 (2015).

    Article  ADS  Google Scholar 

  58. Xu, P., Zheng, J., Doylend, J. K. & Majumdar, A. Low-loss and broadband nonvolatile phase-change directional coupler switches. ACS Photonics 6, 553–557 (2019).

    Article  Google Scholar 

  59. Wu, C. et al. Low-loss integrated photonic switch using subwavelength patterned phase change material. ACS Photonics 6, 87–92 (2019).

    Article  Google Scholar 

  60. Kusne, A. G. et al. On-the-fly closed-loop materials discovery via Bayesian active learning. Nat. Commun. 11, 5966 (2020).

    Article  ADS  Google Scholar 

  61. Dong, W. et al. Wide bandgap phase change material tuned visible photonics. Adv. Funct. Mater. 29, 1806181 (2019).

    Article  Google Scholar 

  62. Delaney, M. et al. Nonvolatile programmable silicon photonics using an ultralow-loss Sb2Se3 phase change material. Sci. Adv. 7, eabg3500 (2021).

    Article  ADS  Google Scholar 

  63. Raty, J. et al. A quantum‐mechanical map for bonding and properties in solids. Adv. Mater. 31, 1806280 (2019).

    Article  Google Scholar 

  64. Müller, M. J. et al. Tailoring crystallization kinetics of chalcogenides for photonic applications. Adv. Electron. Mater. 8, 2100974 (2021).

    Article  Google Scholar 

  65. Fang, Z. et al. Non-volatile reconfigurable integrated photonics enabled by broadband low-loss phase change material. Adv. Opt. Mater. 9, 2002049 (2021).

    Article  Google Scholar 

  66. Wu, C. et al. Harnessing optoelectronic noises in a photonic generative network. Sci. Adv. 8, eabm2956 (2022).

    Article  ADS  Google Scholar 

  67. Zhang, Y. et al. Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material. Nat. Nanotechnol. 16, 661–666 (2021).

    Article  ADS  Google Scholar 

  68. Youngblood, N. et al. Reconfigurable low-emissivity optical coating using ultrathin phase change materials. ACS Photonics 9, 90–100 (2022).

    Article  Google Scholar 

  69. Zhang, H. et al. Miniature multilevel optical memristive switch using phase change material. ACS Photonics 6, 2205–2212 (2019).

    Article  Google Scholar 

  70. Ríos, C. et al. Multi‐level electro‐thermal switching of optical phase‐change materials using graphene. Adv. Photon. Res. 2, 2000034 (2021).

    Article  Google Scholar 

  71. Fang, Z. et al. Ultra-low-energy programmable non-volatile silicon photonics based on phase-change materials with graphene heaters. Nat. Nanotechnol. 17, 842–848 (2022).

    Article  ADS  Google Scholar 

  72. di Martino, G. & Tappertzhofen, S. Optically accessible memristive devices. Nanophotonics 8, 1579–1589 (2019).

    Article  Google Scholar 

  73. di Martino, G. et al. Real-time in situ optical tracking of oxygen vacancy migration in memristors. Nat. Electron. 3, 687–693 (2020).

    Article  Google Scholar 

  74. Hoessbacher, C. et al. The plasmonic memristor: a latching optical switch. Optica 1, 198–202 (2014).

    Article  ADS  Google Scholar 

  75. Emboras, A. et al. Atomic scale plasmonic switch. Nano Lett. 16, 709–714 (2016).

    Article  ADS  Google Scholar 

  76. Tossoun, B. M., Sheng, X., Strachan, J. P., Liang, D. & Beausoleil, R. G. Hybrid memristor optoelectronic integrated circuits for optical computing. In Proc. SPIE 12005, Smart Photonic and Optoelectronic Integrated Circuits 2022 1200506 (SPIE, 2022).

  77. Heni, W. et al. Plasmonic IQ modulators with attojoule per bit electrical energy consumption. Nat. Commun. 10, 1694 (2019).

    Article  ADS  Google Scholar 

  78. Portner, K. et al. Analog nanoscale electro-optical synapses for neuromorphic computing applications. ACS Nano 15, 14776–14785 (2021).

    Article  Google Scholar 

  79. Parra, J., Olivares, I., Brimont, A. & Sanchis, P. Toward nonvolatile switching in silicon photonic devices. Laser Photon. Rev. 15, 2000501 (2021).

    Article  ADS  Google Scholar 

  80. Barrios, C. A. & Lipson, M. Silicon photonic read-only memory. J. Lightwave Technol. 24, 2898–2905 (2006).

    Article  ADS  Google Scholar 

  81. Parra, J., Olivares, I., Brimont, A. & Sanchis, P. Non-volatile epsilon-near-zero readout memory. Opt. Lett. 44, 3932–3935 (2019).

    Article  ADS  Google Scholar 

  82. Li, Y., Ping, H., Dai, T., Chen, W. & Wang, P. Nonvolatile silicon photonic switch with graphene based flash-memory cell. Opt. Mater. Express 11, 766–773 (2021).

    Article  ADS  Google Scholar 

  83. Olivares, I., Parra, J. & Sanchis, P. Non-volatile photonic memory based on a SAHAS configuration. IEEE Photon. J. 13, 1–8 (2021).

    Article  Google Scholar 

  84. Parra, J., Olivares, I., Ramos, F. & Sanchis, P. Ultra-compact non-volatile Mach-Zehnder switch enabled by a high-mobility transparent conducting oxide. Opt. Lett. 45, 1503–1506 (2020).

    Article  ADS  Google Scholar 

  85. Timurdogan, E., Poulton, C. V., Byrd, M. J. & Watts, M. R. Electric field-induced second-order nonlinear optical effects in silicon waveguides. Nat. Photon. 11, 200–206 (2017).

    Article  ADS  Google Scholar 

  86. Xiong, C. et al. Active silicon integrated nanophotonics: ferroelectric BaTiO3 devices. Nano Lett. 14, 1419–1425 (2014).

    Article  ADS  Google Scholar 

  87. Eltes, F. et al. Low-loss BaTiO3–Si waveguides for nonlinear integrated photonics. ACS Photonics 3, 1698–1703 (2016).

    Article  Google Scholar 

  88. Yao, D. et al. Energy-efficient non-volatile ferroelectric based electrostatic doping multilevel optical readout memory. Opt. Express 30, 13572 (2022).

    Article  ADS  Google Scholar 

  89. Edinger, P. et al. Silicon photonic microelectromechanical phase shifters for scalable programmable photonics. Opt. Lett. 46, 5671 (2021).

    Article  ADS  Google Scholar 

  90. Seok, T. J., Quack, N., Han, S., Muller, R. S. & Wu, M. C. Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers. Optica 3, 64–70 (2016).

    Article  ADS  Google Scholar 

  91. Edinger, P. et al. A bistable silicon photonic MEMS phase switch for nonvolatile photonic circuits. In Proc. 2022 IEEE 35th International Conference on Micro Electro Mechanical Systems Conference (MEMS) 995–997 (IEEE, 2022).

  92. Abe, S. & Hane, K. Variable-gap silicon photonic waveguide coupler switch with a nanolatch mechanism. IEEE Photon. Technol. Lett. 25, 675–677 (2013).

    Article  ADS  Google Scholar 

  93. Sattari, H., Toros, A., Graziosi, T. & Quack, N. Bistable silicon photonic MEMS switches. In Proc. SPIE 10931, MOEMS and Miniaturized Systems XVIII 109310D (SPIE, 2019).

  94. Errando-Herranz, C. et al. MEMS for photonic integrated circuits. IEEE J. Sel. Top. Quantum Electron. 26, 8200916 (2020).

    Article  Google Scholar 

  95. Haffner, C. et al. Nano-opto-electro-mechanical switches operated at CMOS-level voltages. Science 366, 860–864 (2019).

    Article  ADS  Google Scholar 

  96. Spagnolo, M. et al. Experimental photonic quantum memristor. Nat. Photon. 16, 318–323 (2022).

  97. Sarwat, S. G., Moraitis, T., Wright, C. D. & Bhaskaran, H. Chalcogenide optomemristors for multi-factor neuromorphic computation. Nat. Commun. 13, 2247 (2022).

    Article  ADS  Google Scholar 

  98. Lee, J. S., Farmakidis, N., David Wright, C. & Bhaskaran, H. Polarization-selective reconfigurability in hybridized-active-dielectric nanowires. Sci. Adv. 8, 9459 (2022).

    Article  Google Scholar 

  99. Feldmann, J. et al. Calculating with light using a chip-scale all-optical abacus. Nat. Commun. 8, 1256 (2017).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are grateful to C. Lian and S. Rahimi Kari for assistance in preparing this manuscript. This work was supported in part by the US National Science Foundation under grants nos. ECCS-2028624, ECCS-2210168/2210169, DMR-2003325, ECCS-2132929 and CISE-2105972. N.Y. acknowledges support from the University of Pittsburgh Momentum Fund. C.R. acknowledges support from the Minta Martin Foundation through the University of Maryland. This work was supported by the European Union’s Horizon 2020 research and innovation programme (grant no. 101017237, PHOENICS Project) and the European Union’s Innovation Council Pathfinder programme (grant no. 101046878, HYBRAIN Project), as well as by EPSRC grants nos. EP/R001677/1, EP/M015173/1 and EP/J018694/1. A broad statement on the sustainability of materials and/or the technology described here is briefed (not peer-reviewed) at the authors’ discretion at https://nanoeng.materials.ox.ac.uk/sustainability. We acknowledge funding support by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany´s Excellence Strategy EXC 2181/1 – 390900948 (the Heidelberg STRUCTURES Excellence Cluster) and CRC 1459.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harish Bhaskaran.

Ethics declarations

Competing interests

W.P. and H.B. hold shares in Salience Labs Ltd. All authors have patents and patent applications in photonic devices. The authors declare that they have taken steps to ensure that these competing interests have not influenced the manuscript in any way.

Peer review

Peer review information

Nature Photonics thanks Pablo Sanchis and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Youngblood, N., Ríos Ocampo, C.A., Pernice, W.H.P. et al. Integrated optical memristors. Nat. Photon. 17, 561–572 (2023). https://doi.org/10.1038/s41566-023-01217-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-023-01217-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing