Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Thermodynamic theory of highly multimoded nonlinear optical systems

Abstract

Lately, there has been a resurgence of interest in nonlinear multimode optical systems. The sheer complexity emerging from the presence of a multitude of nonlinearly interacting modes has led not only to new opportunities in observing a host of novel optical effects but also to new theoretical challenges in understanding their collective dynamics. Here, we present a consistent thermodynamical framework capable of describing in a universal fashion the exceedingly intricate behaviour of such photonic configurations. In this respect, we derive new equations of state and show that both the ‘internal energy’ and optical power always flow in accord to the second law of thermodynamics. The laws governing isentropic processes are derived and the prospect for realizing Carnot-like cycles is presented. In addition to shedding light on fundamental issues, our work may pave the way towards a new generation of high-power multimode optical structures and could have ramifications in other disciplines, such as Bose–Einstein condensates and optomechanics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Thermalization dynamics in nonlinear multimode waveguides and cavity structures.
Fig. 2: Thermalization in a canonical-like optical multimode nonlinear configuration involving two circular polarizations.
Fig. 3: Thermalization of two different optical waveguide lattices in thermal contact.
Fig. 4: Thermalization in a grand canonical-like configuration involving a Lieb and a rectangular nonlinear optical lattice.
Fig. 5: All-optical refrigeration via Carnot cycles.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Richardson, D., Fini, J. & Nelson, L. Space-division multiplexing in optical fibres. Nat. Photon. 7, 354–362 (2013).

    Article  ADS  Google Scholar 

  2. Li, G., Bai, N., Zhao, N. & Xia, C. Space-division multiplexing: the next frontier in optical communication. Adv. Opt. Photon. 6, 413–487 (2014).

    Article  Google Scholar 

  3. Ryf, R. et al. Mode-division multiplexing over 96 km of few-mode fiber using coherent 6 × 6 MIMO processing. J. Lightwave Technol. 30, 521–531 (2012).

    Article  ADS  Google Scholar 

  4. Fan, S. & Kahn, J. M. Principal modes in multimode waveguides. Opt. Lett. 30, 135–137 (2005).

    Article  ADS  Google Scholar 

  5. Xiong, W. et al. Complete polarization control in multimode fibers with polarization and mode coupling. Light Sci. Appl. 7, 54 (2018).

    Article  ADS  Google Scholar 

  6. Ambichl, P. et al. Super- and anti-principal-modes in multimode waveguides. Phys. Rev. X 7, 041053 (2017).

    Google Scholar 

  7. Poletti, F. & Horak, P. Description of ultrashort pulse propagation in multimode optical fibers. J. Opt. Soc. Am. B 25, 1645–1654 (2008).

    Article  ADS  Google Scholar 

  8. Mafi, A. Pulse propagation in a short nonlinear graded-index multimode optical fiber. J. Lightwave Technol. 30, 2803–2811 (2012).

    Article  ADS  Google Scholar 

  9. Pourbeyram, H., Agrawal, G. P. & Mafi, A. Stimulated Raman scattering cascade spanning the wavelength range of 523 to 1750 nm using a graded-index multimode optical fiber. Appl. Phys. Lett. 102, 201107 (2013).

    Article  ADS  Google Scholar 

  10. Wright, L. G., Christodoulides, D. N. & Wise, F. W. Spatiotemporal mode-locking in multimode fiber lasers. Science 358, 94–97 (2017).

    Article  ADS  Google Scholar 

  11. Longhi, S. Modulational instability and space time dynamics in nonlinear parabolic-index optical fibers. Opt. Lett. 28, 2363–2365 (2003).

    Article  ADS  Google Scholar 

  12. Lopez-Galmiche, G. et al. Visible supercontinuum generation in a graded index multimode fiber pumped at 1064 nm. Opt. Lett. 41, 2553–2556 (2016).

    Article  ADS  Google Scholar 

  13. Krupa, K. et al. Observation of geometric parametric instability induced by the periodic spatial self-imaging of multimode waves. Phys. Rev. Lett. 116, 183901 (2016).

    Article  ADS  Google Scholar 

  14. Lopez-Aviles, H. E. et al. A systematic analysis of parametric instabilities in nonlinear parabolic multimode fibers. APL Photon. 4, 022803 (2019).

    Article  Google Scholar 

  15. Krupa, K. et al. Spatiotemporal characterization of supercontinuum extending from the visible to the mid-infrared in a multimode graded-index optical fiber. Opt. Lett. 41, 5785–5788 (2016).

    Article  ADS  Google Scholar 

  16. Renninger, W. H. & Wise, F. W. Optical solitons in graded-index multimode fibres. Nat. Commun. 4, 1719 (2013).

    Article  ADS  Google Scholar 

  17. Wright, L. G., Christodoulides, D. N. & Wise, F. W. Controllable spatiotemporal nonlinear effects in multimode fibres. Nat. Photon. 9, 306–310 (2015).

    Article  ADS  Google Scholar 

  18. Liu, Z., Wright, L. G., Christodoulides, D. N. & Wise, F. W. Kerr self-cleaning of femtosecond-pulsed beams in graded-index multimode fiber. Opt. Lett. 41, 3675–3678 (2016).

    Article  ADS  Google Scholar 

  19. Krupa, K. et al. Spatial beam self-cleaning in multimode fibres. Nat. Photon. 11, 237–241 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  20. Kolesik, M. & Moloney, J. V. Nonlinear optical pulse propagation simulation: from Maxwell’s to unidirectional equations. Phys. Rev. E 70, 036604 (2004).

    Article  ADS  Google Scholar 

  21. Agrawal, G. P. Nonlinear Fiber Optics 5th edn (Springer, 2000).

  22. Pathria, R. K. & Beale, P. D. Statistical Mechanics 3rd edn (Elsevier Science, 2011).

  23. Jaynes, E. T. Information theory and statistical mechanics. Phys. Rev. 106, 620–630 (1957).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Picozzi, A. et al. Optical wave turbulence: towards a unified nonequilibrium thermodynamic formulation of statistical nonlinear optics. Phys. Rep. 542, 1–132 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  25. Chiocchetta, A., Larré, P. É. & Carusotto, I. Thermalization and Bose–Einstein condensation of quantum light in bulk nonlinear media. Europhys. Lett. 115, 24002 (2016).

    Article  ADS  Google Scholar 

  26. Stone, J. M., Yu, F. & Knight, J. C. Highly birefringent 98-core fiber. Opt. Lett. 39, 4568–4570 (2014).

    Article  ADS  Google Scholar 

  27. Christodoulides, D. N., Lederer, F. & Silberberg, Y. Discretizing light behaviour in linear and nonlinear waveguide lattices. Nature 424, 817–823 (2003).

    Article  ADS  Google Scholar 

  28. Yariv, A., Xu, Y., Lee, R. K. & Scherer, A. Coupled-resonator optical waveguide: a proposal and analysis. Opt. Lett. 24, 711–713 (1999).

    Article  ADS  Google Scholar 

  29. Vahala, K. J. Optical microcavities. Nature 424, 839–846 (2003).

    Article  ADS  Google Scholar 

  30. Rigol, M., Dunjko, V. & Olshanii, M. Thermalization and its mechanism for generic isolated quantum systems. Nature 452, 854–858 (2008).

    Article  ADS  Google Scholar 

  31. Zakharov, V. E., L’vov, V. S. & Falkovich, G. Kolmogorov Spectra of Turbulence I: Wave Turbulence (Springer Science & Business Media, 2012).

  32. Dyachenko, S., Newell, A. C., Pushkarev, A. & Zakharov, V. E. Optical turbulence: weak turbulence, condensates and collapsing filaments in the nonlinear Schrödinger equation. Physica D 57, 96–160 (1992).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Picozzi, A. Towards a nonequilibrium thermodynamic description of incoherent nonlinear optics. Opt. Express 15, 9063–9083 (2007).

    Article  ADS  Google Scholar 

  34. Lagrange, S., Jauslin, H. R. & Picozzi, A. Thermalization of the dispersive three-wave interaction. Europhys. Lett. 79, 64001 (2007).

    Article  ADS  Google Scholar 

  35. Picozzi, A. & Rica, S. Condensation of classical optical waves beyond the cubic nonlinear Schrödinger equation. Opt. Commun. 285, 5440–5448 (2012).

    Article  ADS  Google Scholar 

  36. Sun, C. et al. Observation of the kinetic condensation of classical waves. Nat. Phys. 8, 470–474 (2012).

    Article  Google Scholar 

  37. Davis, M., Morgan, S. & Burnett, K. Simulations of Bose fields at finite temperature. Phys. Rev. Lett. 87, 160402 (2001).

    Article  ADS  Google Scholar 

  38. Davis, M., Morgan, S. & Burnett, K. Simulations of thermal Bose fields in the classical limit. Phys. Rev. A 66, 053618 (2002).

    Article  ADS  Google Scholar 

  39. Klaers, J., Schmitt, J., Vewinger, F. & Weitz, M. Bose–Einstein condensation of photons in an optical microcavity. Nature 468, 545–548 (2010).

    Article  ADS  Google Scholar 

  40. Aschieri, P., Garnier, J., Michel, C., Doya, V. & Picozzi, A. Condensation and thermalization of classsical optical waves in a waveguide. Phys. Rev. A 83, 033838 (2011).

    Article  ADS  Google Scholar 

  41. Rasmussen, K. Ø., Cretegny, T., Kevrekidis, P. G. & Grønbech-Jensen, N. Statistical mechanics of a discrete nonlinear system. Phys. Rev. Lett. 84, 3740–3743 (2000).

    Article  ADS  Google Scholar 

  42. Silberberg, Y., Lahini, Y., Bromberg, Y., Small, E. & Morandotti, R. Universal correlations in a nonlinear periodic 1D system. Phys. Rev. Lett. 102, 233904 (2009).

    Article  ADS  Google Scholar 

  43. Kottos, T. & Shapiro, B. Thermalization of strongly disordered nonlinear chains. Phys. Rev. E 83, 062103 (2011).

    Article  ADS  Google Scholar 

  44. Rumpf, B. Transition behavior of the discrete nonlinear Schrödinger equation. Phys. Rev. E 77, 036606 (2008).

    Article  ADS  Google Scholar 

  45. Derevyanko, S. A. Thermalized polarization dynamics of a discrete optical-waveguide system with four-wave mixing. Phys. Rev. A 88, 033851 (2013).

    Article  ADS  Google Scholar 

  46. Fusaro, A., Garnier, J., Krupa, K., Millot, G. & Picozzi, A. Dramatic acceleration of wave condensation mediated by disorder in multimode fibers. Phys. Rev. Lett. 122, 123902 (2019).

    Article  ADS  Google Scholar 

  47. Purcell, E. M. & Pound, R. V. A nuclear spin system at negative temperature. Phys. Rev. 81, 279–280 (1951).

    Article  ADS  Google Scholar 

  48. Ramsey, N. F. Thermodynamics and statistical mechanics at negative absolute temperatures. Phys. Rev. 103, 20–28 (1956).

    Article  ADS  MATH  Google Scholar 

  49. Braun, S. et al. Negative absolute temperature for motional degrees of freedom. Science 339, 52–55 (2013).

    Article  ADS  Google Scholar 

  50. Kikuchi, R. & Soffer, B. H. Maximum entropy image restoration. I. The entropy expression. J. Opt. Soc. Am. 67, 1656–1665 (1977).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank G. Tan and Y. Huang for computing support. We acknowledge financial support by the Office of Naval Research (ONR) (MURI N00014-17-1-2588 and N00014-18-1-2347), the National Science Foundation (NSF) (EECS-1711230) and the Qatar National Research Fund (NPRP9-020-1-006).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed extensively to the work presented in this paper. F.O.W., A.U.H. and D.N.C. developed the theoretical formalism. F.O.W. performed the calculation. F.O.W., A.U.H. and D.N.C. wrote the paper. D.N.C. supervised the project.

Corresponding author

Correspondence to Demetrios N. Christodoulides.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary methods and derivations and Figs. 1–7.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, F.O., Hassan, A.U. & Christodoulides, D.N. Thermodynamic theory of highly multimoded nonlinear optical systems. Nat. Photonics 13, 776–782 (2019). https://doi.org/10.1038/s41566-019-0501-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-019-0501-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing