Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Actively tunable laser action in GeSn nanomechanical oscillators

Abstract

Mechanical forces induced by high-speed oscillations provide an elegant way to dynamically alter the fundamental properties of materials such as refractive index, absorption coefficient and gain dynamics. Although the precise control of mechanical oscillation has been well developed in the past decades, the notion of dynamic mechanical forces has not been harnessed for developing tunable lasers. Here we demonstrate actively tunable mid-infrared laser action in group-IV nanomechanical oscillators with a compact form factor. A suspended GeSn cantilever nanobeam on a Si substrate is resonantly driven by radio-frequency waves. Electrically controlled mechanical oscillation induces elastic strain that periodically varies with time in the GeSn nanobeam, enabling actively tunable lasing emission at >2 μm wavelengths. By utilizing mechanical resonances in the radio frequency as a driving mechanism, this work presents wide-range mid-infrared tunable lasers with ultralow tuning power consumption.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Design of a GeSn nanomechanical oscillator for actively tunable laser action.
Fig. 2: Mechanical characterization and simulation.
Fig. 3: Laser emission characteristics from an actuated oscillator.
Fig. 4: Theoretical analysis for the laser-tuning behaviour.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available in this article and its Supplementary Information. Any other relevant data are available from the corresponding authors upon request.

References

  1. Choi, J.-H. et al. A high-resolution strain-gauge nanolaser. Nat. Commun. 7, 11569 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Niffenegger, R. J. et al. Integrated multi-wavelength control of an ion qubit. Nature 586, 538–542 (2020).

    Article  CAS  PubMed  Google Scholar 

  3. Corato-Zanarella, M. et al. Widely tunable and narrow-linewidth chip-scale lasers from near-ultraviolet to near-infrared wavelengths. Nat. Photon. 17, 157–164 (2023).

    Article  CAS  Google Scholar 

  4. Shim, E. et al. Tunable single-mode chip-scale mid-infrared laser. Commun. Phys. 4, 268 (2021).

    Article  CAS  Google Scholar 

  5. Xin, M. et al. Optical frequency synthesizer with an integrated erbium tunable laser. Light Sci. Appl. 8, 122 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Huang, M. C. Y., Zhou, Y. & Chang-Hasnain, C. J. A nanoelectromechanical tunable laser. Nat. Photon. 2, 180–184 (2008).

    Article  CAS  Google Scholar 

  7. Snigirev, V. et al. Ultrafast tunable lasers using lithium niobate integrated photonics. Nature 615, 411–417 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Li, M. et al. Integrated Pockels laser. Nat. Commun. 13, 5344 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ueda, Y., Shindo, T., Kanazawa, S., Fujiwara, N. & Ishikawa, M. Electro-optically tunable laser with ultra-low tuning power dissipation and nanosecond-order wavelength switching for coherent networks. Optica 7, 1003–1006 (2020).

    Article  CAS  Google Scholar 

  10. Andreou, S., Williams, K. A. & Bente, E. A. J. M. Electro-optic tuning of a monolithically integrated widely tuneable InP laser with free-running and stabilized operation. J. Lightwave Technol. 38, 1887–1894 (2020).

    Article  CAS  Google Scholar 

  11. Huang, M. C. Y., Zhou, Y. & Chang-Hasnain, C. J. A surface-emitting laser incorporating a high-index-contrast subwavelength grating. Nat. Photon. 1, 119–122 (2007).

    Article  CAS  Google Scholar 

  12. Unterreithmeier, Q. P., Weig, E. M. & Kotthaus, J. P. Universal transduction scheme for nanomechanical systems based on dielectric forces. Nature 458, 1001–1004 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Liu, N. et al. Time-domain control of ultrahigh-frequency nanomechanical systems. Nat. Nanotechnol. 3, 715–719 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Li, M., Tang, H. X. & Roukes, M. L. Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications. Nat. Nanotechnol. 2, 114–120 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Henry Huang, X. M., Zorman, C. A., Mehregany, M. & Roukes, M. L. Nanodevice motion at microwave frequencies. Nature 421, 496–496 (2003).

    Article  PubMed  Google Scholar 

  16. Gupta, S., Magyari-Köpe, B., Nishi, Y. & Saraswat, K. C. Achieving direct band gap in germanium through integration of Sn alloying and external strain. J. Appl. Phys. 113, 073707 (2013).

    Article  Google Scholar 

  17. Burt, D. et al. Direct bandgap GeSn nanowires enabled with ultrahigh tension from harnessing intrinsic compressive strain. Appl. Phys. Lett. 120, 202103 (2022).

    Article  CAS  Google Scholar 

  18. Burt, D. et al. Strain-relaxed GeSn-on-insulator (GeSnOI) microdisks. Opt. Express 29, 28959–28967 (2021).

    Article  CAS  PubMed  Google Scholar 

  19. Dutt, B. et al. Theoretical analysis of GeSn alloys as a gain medium for a Si-compatible laser. IEEE J. Sel. Topics Quantum Electron. 19, 1502706 (2013).

    Article  Google Scholar 

  20. Nam, D. et al. Strain-induced pseudoheterostructure nanowires confining carriers at room temperature with nanoscale-tunable band profiles. Nano Lett. 13, 3118–3123 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. Joo, H.-J. et al. 1D photonic crystal direct bandgap GeSn-on-insulator laser. Appl. Phys. Lett. 119, 201101 (2021).

    Article  CAS  Google Scholar 

  22. Cleland, A. N. & Roukes, M. L. Noise processes in nanomechanical resonators. J. Appl. Phys. 92, 2758–2769 (2002).

    Article  CAS  Google Scholar 

  23. Liu, J. et al. Ultrafast detection of terahertz radiation with miniaturized optomechanical resonator driven by dielectric driving force. ACS Photonics 9, 1541–1546 (2022).

    Article  CAS  Google Scholar 

  24. Tran, H. et al. Systematic study of Ge1−xSnx absorption coefficient and refractive index for the device applications of Si-based optoelectronics. J. Appl. Phys. 119, 103106 (2016).

    Article  Google Scholar 

  25. Brian Sia, J. X. et al. Sub-kHz linewidth, hybrid III-V/silicon wavelength-tunable laser diode operating at the application-rich 1647-1690 nm. Opt. Express 28, 25215–25224 (2020).

    Article  PubMed  Google Scholar 

  26. Chu, T., Fujioka, N. & Ishizaka, M. Compact, lower-power-consumption wavelength tunable laser fabricated with silicon photonic wire waveguide micro-ring resonators. Opt. Express 17, 14063–14068 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Huang, M. C. Y., Zhou, Y. & Chang-Hasnain, C. J. Nano electro-mechanical optoelectronic tunable VCSEL. Opt. Express 15, 1222–1227 (2007).

    Article  PubMed  Google Scholar 

  28. Beccari, A. et al. Strained crystalline nanomechanical resonators with quality factors above 10 billion. Nat. Phys. 18, 436–441 (2022).

    Article  CAS  Google Scholar 

  29. Yu, D. & Vollmer, F. Active optomechanics. Commun. Phys. 5, 61 (2022).

    Article  Google Scholar 

  30. Czerniuk, T. et al. Lasing from active optomechanical resonators. Nat. Commun. 5, 4038 (2014).

    Article  CAS  PubMed  Google Scholar 

  31. Lyubarov, M. et al. Amplified emission and lasing in photonic time crystals. Science 377, 425–428 (2022).

    Article  CAS  PubMed  Google Scholar 

  32. Gaidarzhy, A., Zolfagharkhani, G., Badzey, R. L. & Mohanty, P. Spectral response of a gigahertz-range nanomechanical oscillator. Appl. Phys. Lett. 86, 254103 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Research Foundation of Singapore through the NRF-ANR Joint Grant (NRF2018-NRF-ANR009 TIGER). This work is also supported by the National Research Foundation of Singapore through the Competitive Research Program (NRF-CRP19-2017-01). This work is also supported by the iGrant of Singapore A*STAR AME IRG (A2083c0053). This research is also supported by the National Research Foundation, Singapore, and A*STAR under its Quantum Engineering Programme (NRF2022-QEP2-02-P13), by ANR-18-CE24-0025 project TIGER and the ENS-Thales Chair. We acknowledge and thank the Nanyang NanoFabrication Centre (N2FC). We also thank D. Zhu, J. Witzens and B. Marzban for fruitful discussions.

Author information

Authors and Affiliations

Authors

Contributions

D.N., C.S. and Y.T. conceived the initial idea of the project. H.-J.J. fabricated the samples. H.-J.J. and D.N. planned the optical experiments. H.-J.J. and M.C. carried out the optical measurements. J.L. and B.C. conducted the optomechanical simulations and characterization measurements. D.G. assisted with the mechanical measurement setup. J.L., Y.T. and A.V. conducted theoretical studies on driven nanomechanical oscillators. Under the guidance of D.N., Y.T. and C.S., H.-J.J. and J.L. performed the data analysis. Y.K. optimized the laser structure by performing optical simulations. Z.I. conducted the band structure simulations and gain modelling. K.L. and X.S. assisted with the optical measurement setup. Y.-I.S. contributed to the construction of the RF drive setup. L.Z. and C.S.T. prepared the GeSn wafer. D.B. fabricated the GeSnOI substrates. H.-J.J. and D.N. led the manuscript writing with input from J.L., M.C., D.B., C.S. and Y.T. All authors discussed the data and participated in preparing the manuscript.

Corresponding authors

Correspondence to Carlo Sirtori, Yanko Todorov or Donguk Nam.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–12, Figs. 1–15 and Table 1.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joo, HJ., Liu, J., Chen, M. et al. Actively tunable laser action in GeSn nanomechanical oscillators. Nat. Nanotechnol. (2024). https://doi.org/10.1038/s41565-024-01662-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41565-024-01662-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing