Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Multimodal nanoimmunotherapy engages neutrophils to eliminate Staphylococcus aureus infections

Abstract

The increasing prevalence of antimicrobial resistance in Staphylococcus aureus necessitates alternative therapeutic approaches. Neutrophils play a crucial role in the fight against S. aureus but suffer from deficiencies in function leading to increased infection. Here we report a nanoparticle-mediated immunotherapy aimed at potentiating neutrophils to eliminate S. aureus. The nanoparticles consist of naftifine, haemoglobin (Hb) and a red blood cell membrane coating. Naftifine disrupts staphyloxanthin biosynthesis, Hb reduces bacterial hydrogen sulfide levels and the red blood cell membrane modifies bacterial lipid composition. Collectively, the nanoparticles can sensitize S. aureus to host oxidant killing. Furthermore, in the infectious microenvironment, Hb triggers lipid peroxidation in S. aureus, promoting neutrophil chemotaxis. Oxygen supplied by Hb can also significantly enhance the bactericidal capability of the recruited neutrophils by restoring neutrophil respiratory burst via hypoxia relief. This multimodal nanoimmunotherapy demonstrates excellent therapeutic efficacy in treating antimicrobial-resistant S. aureus persisters, biofilms and S. aureus-induced infection in mice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The design and characterization of Hb-Naf@RBCM NPs for treating S. aureus infection.
Fig. 2: In vitro antibacterial efficacy of Hb-Naf@RBCM NPs against S. aureus planktons, persisters and biofilms.
Fig. 3: Hb-Naf@RBCM NP-induced lipid peroxidation in S. aureus for neutrophil chemotaxis.
Fig. 4: Enhanced in vitro antimicrobial efficacy of neutrophils in a hypoxic microenvironment by Hb-Naf@RBCM NPs.
Fig. 5: In vivo therapeutic efficacy of Hb-Naf@RBCM NPs in mice with MRSA thigh infection and MRSA pneumonia.
Fig. 6: In vivo therapeutic efficacy of Hb-Naf@RBCM NPs in mice with MRSA peritonitis and MDRSA bacteraemia.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the article and its Supplementary Information.

References

  1. Antimicrobial Resistance and Primary Health Care (World Health Organization, 2018).

  2. Tacconelli, E. et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 18, 318–327 (2018).

    Article  PubMed  Google Scholar 

  3. Lowy, F. D. Staphylococcus aureus infections. N. Engl. J. Med. 339, 520–532 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Solomon, S. L. & Oliver, K. B. Antibiotic resistance threats in the United States: stepping back from the brink. Am. Fam. Physician 89, 938–941 (2014).

    PubMed  Google Scholar 

  5. Daum, R. S. Clinical practice. Skin and soft-tissue infections caused by methicillin-resistant Staphylococcus aureus. N. Engl. J. Med. 357, 380–390 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. DeLeo, F. R., Otto, M., Kreiswirth, B. N. & Chambers, H. F. Community-associated meticillin-resistant Staphylococcus aureus. Lancet 375, 1557–1568 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  7. DeLeo, F. R. & Chambers, H. F. Reemergence of antibiotic-resistant Staphylococcus aureus in the genomics era. J. Clin. Invest. 119, 2464–2474 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Klein, E., Smith, D. L. & Laxminarayan, R. Hospitalizations and deaths caused by methicillin-resistant Staphylococcus aureus, United States, 1999–2005. Emerg. Infect. Dis. 13, 1840–1846 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Antibiotic Resistance Threats in the United States, 2019 (US Department of Health and Human Services, Centres for Disease Control and Prevention, 2019).

  10. Piddock, L. J. The crisis of no new antibiotics—what is the way forward? Lancet Infect. Dis. 12, 249–253 (2012).

    Article  PubMed  Google Scholar 

  11. Silver, L. L. Challenges of antibacterial discovery. Clin. Microbiol Rev. 24, 71–109 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. 2021 Antibacterial Agents in Clinical and Preclinical Development: An Overview and Analysis (World Health Organization, 2022).

  13. Hou, X. et al. Vitamin lipid nanoparticles enable adoptive macrophage transfer for the treatment of multidrug-resistant bacterial sepsis. Nat. Nanotechnol. 15, 41–46 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Deresinski, S. & Herrera, V. Immunotherapies for Staphylococcus aureus: current challenges and future prospects. Infect. Control Hospital Epidemiol. 31, S45–S47 (2010).

    Article  Google Scholar 

  15. Schaffer, A. C. & Lee, J. C. Vaccination and passive immunisation against Staphylococcus aureus. Int. J. Antimicrob. Agents 32, S71–S78 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Kobayashi, S. D. & DeLeo, F. R. A MRSA-terious enemy among us: boosting MRSA vaccines. Nat. Med. 17, 168–169 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. Amulic, B., Cazalet, C., Hayes, G. L., Metzler, K. D. & Zychlinsky, A. Neutrophil function: from mechanisms to disease. Annu. Rev. Immunol. 30, 459–489 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. Xue, J. et al. Neutrophil-mediated anticancer drug delivery for suppression of postoperative malignant glioma recurrence. Nat. Nanotechnol. 12, 692–700 (2017).

    Article  CAS  PubMed  Google Scholar 

  19. Gonzalez-Barca, E., Carratala, J., Mykietiuk, A., Fernandez-Sevilla, A. & Gudiol, F. Predisposing factors and outcome of Staphylococcus aureus bacteremia in neutropenic patients with cancer. Eur. J. Clin. Microbiol. Infect. Dis. 20, 117–119 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Lakshman, R. & Finn, A. Neutrophil disorders and their management. J. Clin. Pathol. 54, 7–19 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bouma, G., Ancliff, P. J., Thrasher, A. J. & Burns, S. O. Recent advances in the understanding of genetic defects of neutrophil number and function. Br. J. Haematol. 151, 312–326 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Andrews, T. & Sullivan, K. E. Infections in patients with inherited defects in phagocytic function. Clin. Microbiol. Rev. 16, 597–621 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Antibacterial Products in Clinical Development for Priority Pathogens (World Health Organization, 2021); https://www.who.int/observatories/global-observatory-on-health-research-and-development/monitoring/antibacterial-products-in-clinical-development-for-priority-pathogens

  24. Liu, C.-I. et al. A cholesterol biosynthesis inhibitor blocks Staphylococcus aureus virulence. Science 319, 1391–1394 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liu, G. Y. et al. Staphylococcus aureus golden pigment impairs neutrophil killing and promotes virulence through its antioxidant activity. J. Exp. Med. 202, 209–215 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shatalin, K., Shatalina, E., Mironov, A. & Nudler, E. H2S: a universal defense against antibiotics in bacteria. Science 334, 986–990 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Shatalin, K. et al. Inhibitors of bacterial H2S biogenesis targeting antibiotic resistance and tolerance. Science 372, 1169–1175 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Guerra, F. E., Borgogna, T. R., Patel, D. M., Sward, E. W. & Voyich, J. M. Epic immune battles of history: neutrophils vs. Staphylococcus aureus. Front. Cell. Infect. Microbiol. 7, 286 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  29. de Haas, C. J. et al. Chemotaxis inhibitory protein of Staphylococcus aureus, a bacterial antiinflammatory agent. J. Exp. Med. 199, 687–695 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Rooijakkers, S. H. et al. Immune evasion by a staphylococcal complement inhibitor that acts on C3 convertases. Nat. Immunol. 6, 920–927 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Simmen, H.-P. & Blaser, J. Analysis of pH and pO2 in abscesses, peritoneal fluid, and drainage fluid in the presence or absence of bacterial infection during and after abdominal surgery. Am. J. Surg. 166, 24–27 (1993).

    Article  CAS  PubMed  Google Scholar 

  32. Bartlett, J. G. & Finegold, S. M. Anaerobic infections of the lung and pleural space. Am. Rev. Respir. Dis. 110, 56–77 (1974).

    CAS  PubMed  Google Scholar 

  33. McGovern, N. N. et al. Hypoxia selectively inhibits respiratory burst activity and killing of Staphylococcus aureus in human neutrophils. J. Immunol. 186, 453–463 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Chen, F. et al. Small-molecule targeting of a diapophytoene desaturase inhibits S. aureus virulence. Nat. Chem. Biol. 12, 174–179 (2016).

    Article  CAS  PubMed  Google Scholar 

  35. Krute, C. N., Ridder, M. J., Seawell, N. A. & Bose, J. L. Inactivation of the exogenous fatty acid utilization pathway leads to increased resistance to unsaturated fatty acids in Staphylococcus aureus. Microbiology 165, 197 (2019).

    Article  CAS  PubMed  Google Scholar 

  36. Tiwari, K. B., Gatto, C. & Wilkinson, B. J. Plasticity of coagulase-negative staphylococcal membrane fatty acid composition and implications for responses to antimicrobial agents. Antibiotics 9, 214 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Beavers, W. N. et al. Arachidonic acid kills Staphylococcus aureus through a lipid peroxidation mechanism. mBio https://doi.org/10.1128/mbio.01333-19 (2019).

  38. Reeder, B. J. & Wilson, M. T. Hemoglobin and myoglobin associated oxidative stress: from molecular mechanisms to disease states. Curr. Med. Chem. 12, 2741–2751 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Alayash, A. I. Oxygen therapeutics: can we tame haemoglobin? Nat. Rev. Drug Discov. 3, 152–159 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Vitvitsky, V. et al. Structural and mechanistic insights into hemoglobin-catalyzed hydrogen sulfide oxidation and the fate of polysulfide products. J. Biol. Chem. 292, 5584–5592 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Vitvitsky, V., Yadav, P. K., Kurthen, A. & Banerjee, R. Sulfide oxidation by a noncanonical pathway in red blood cells generates thiosulfate and polysulfides. J. Biol. Chem. 290, 8310–8320 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Boutaud, O. et al. Acetaminophen inhibits hemoprotein-catalyzed lipid peroxidation and attenuates rhabdomyolysis-induced renal failure. Proc. Natl Acad. Sci. USA 107, 2699–2704 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Alayash, A. I. Hemoglobin-based blood substitutes: oxygen carriers, pressor agents, or oxidants? Nat. Biotechnol. 17, 545–549 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Ayala, A., Muñoz, M. F. & Argüelles, S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid. Med. Cell. Longev. 2014, 360438 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Katikaneni, A. et al. Lipid peroxidation regulates long-range wound detection through 5-lipoxygenase in zebrafish. Nat. Cell Biol. 22, 1049–1055 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rummer, J. L., McKenzie, D. J., Innocenti, A., Supuran, C. T. & Brauner, C. J. Root effect hemoglobin may have evolved to enhance general tissue oxygen delivery. Science 340, 1327–1329 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. Hochmuth, R., Evans, C., Wiles, H. & McCown, J. Mechanical measurement of red cell membrane thickness. Science 220, 101–102 (1983).

    Article  CAS  PubMed  Google Scholar 

  48. Hu, C.-M. J. et al. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc. Natl Acad. Sci. USA 108, 10980–10985 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hu, C. M. et al. Nanoparticle biointerfacing by platelet membrane cloaking. Nature 526, 118–121 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhang, Q. et al. Neutrophil membrane-coated nanoparticles inhibit synovial inflammation and alleviate joint damage in inflammatory arthritis. Nat. Nanotechnol. 13, 1182–1190 (2018).

    Article  CAS  PubMed  Google Scholar 

  51. Su, J. et al. Bioinspired nanoparticles with NIR‐controlled drug release for synergetic chemophotothermal therapy of metastatic breast cancer. Adv. Funct. Mater. 26, 7495–7506 (2016).

    Article  CAS  Google Scholar 

  52. Lin, A. et al. Bacteria-responsive biomimetic selenium nanosystem for multidrug-resistant bacterial infection detection and inhibition. ACS Nano 13, 13965–13984 (2019).

    Article  CAS  PubMed  Google Scholar 

  53. Berube, B. J. & Bubeck Wardenburg, J. Staphylococcus aureus α-toxin: nearly a century of intrigue. Toxins 5, 1140–1166 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Clauditz, A., Resch, A., Wieland, K.-P., Peschel, A. & Götz, F. Staphyloxanthin plays a role in the fitness of Staphylococcus aureus and its ability to cope with oxidative stress. Infect. Immun. 74, 4950–4953 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ren, M. et al. A TICT-based fluorescent probe for rapid and specific detection of hydrogen sulfide and its bio-imaging applications. Chem. Commun. 52, 6415–6418 (2016).

    Article  CAS  Google Scholar 

  56. Balaban, N. Q. et al. Definitions and guidelines for research on antibiotic persistence. Nat. Rev. Microbiol. 17, 441–448 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Davies, J. & Davies, D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev. 74, 417–433 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Levin, B. R. & Rozen, D. E. Non-inherited antibiotic resistance. Nat. Rev. Microbiol. 4, 556–562 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Keren, I., Kaldalu, N., Spoering, A., Wang, Y. & Lewis, K. Persister cells and tolerance to antimicrobials. FEMS Microbiol. Lett. 230, 13–18 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Allison, K. R., Brynildsen, M. P. & Collins, J. J. Metabolite-enabled eradication of bacterial persisters by aminoglycosides. Nature 473, 216–220 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Conlon, B. P. et al. Activated ClpP kills persisters and eradicates a chronic biofilm infection. Nature 503, 365–370 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Costerton, J. W., Stewart, P. S. & Greenberg, E. P. Bacterial biofilms: a common cause of persistent infections. Science 284, 1318–1322 (1999).

    Article  CAS  PubMed  Google Scholar 

  63. Schaible, B., Taylor, C. T. & Schaffer, K. Hypoxia increases antibiotic resistance in Pseudomonas aeruginosa through altering the composition of multidrug efflux pumps. Antimicrob. Agents Chemother. 56, 2114–2118 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Meredith, H. R., Srimani, J. K., Lee, A. J., Lopatkin, A. J. & You, L. Collective antibiotic tolerance: mechanisms, dynamics and intervention. Nat. Chem. Biol. 11, 182–188 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Everse, J. & Hsia, N. The toxicities of native and modified hemoglobins. Free Radic. Biol. Med. 22, 1075–1099 (1997).

    Article  CAS  PubMed  Google Scholar 

  66. Kolaczkowska, E. & Kubes, P. Neutrophil recruitment and function in health and inflammation. Nat. Rev. Immunol. 13, 159–175 (2013).

    Article  CAS  PubMed  Google Scholar 

  67. Payne, J. A. et al. Antibiotic-chemoattractants enhance neutrophil clearance of Staphylococcus aureus. Nat. Commun. 12, 6157 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Quinn, M. T., Ammons, M. C. B. & DeLeo, F. R. The expanding role of NADPH oxidases in health and disease: no longer just agents of death and destruction. Clin. Sci. 111, 1–20 (2006).

    Article  CAS  Google Scholar 

  69. Luo, B. et al. Phagocyte respiratory burst activates macrophage erythropoietin signalling to promote acute inflammation resolution. Nat. Commun. 7, 12177 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Gao, W., Thamphiwatana, S., Angsantikul, P. & Zhang, L. Nanoparticle approaches against bacterial infections. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 6, 532–547 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Azzopardi, E. A., Ferguson, E. L. & Thomas, D. W. The enhanced permeability retention effect: a new paradigm for drug targeting in infection. J. Antimicrob. Chemother. 68, 257–274 (2013).

    Article  CAS  PubMed  Google Scholar 

  72. Ye, M. et al. A dual‐responsive antibiotic‐loaded nanoparticle specifically binds pathogens and overcomes antimicrobial‐resistant infections. Adv. Mater. 33, e2006772 (2021).

    Article  PubMed  Google Scholar 

  73. Thorn, C. R., Thomas, N., Boyd, B. J. & Prestidge, C. A. Nano-fats for bugs: the benefits of lipid nanoparticles for antimicrobial therapy. Drug Deliv. Transl. Res. 11, 1598–1624 (2021).

    CAS  Google Scholar 

  74. Lakshminarayanan, R., Ye, E., Young, D. J., Li, Z. & Loh, X. J. Recent advances in the development of antimicrobial nanoparticles for combating resistant pathogens. Adv. Healthc. Mater. 7, 1701400 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Wang, L., Hu, C. & Shao, L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int. J. Nanomed. 12, 1227 (2017).

    Article  CAS  Google Scholar 

  76. Fenaroli, F. et al. Enhanced permeability and retention-like extravasation of nanoparticles from the vasculature into tuberculosis granulomas in zebrafish and mouse models. ACS Nano 12, 8646–8661 (2018).

    Article  CAS  PubMed  Google Scholar 

  77. Repenko, T. et al. Bio-degradable highly fluorescent conjugated polymer nanoparticles for bio-medical imaging applications. Nat. Commun. 8, 470 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Mantovani, A., Cassatella, M. A., Costantini, C. & Jaillon, S. Neutrophils in the activation and regulation of innate and adaptive immunity. Nat. Rev. Immunol. 11, 519–531 (2011).

    Article  CAS  PubMed  Google Scholar 

  79. Selsted, M. E. & Ouellette, A. J. Mammalian defensins in the antimicrobial immune response. Nat. Immunol. 6, 551–557 (2005).

    Article  CAS  PubMed  Google Scholar 

  80. Huang, X. et al. PD-1 expression by macrophages plays a pathologic role in altering microbial clearance and the innate inflammatory response to sepsis. Proc. Natl Acad. Sci. USA 106, 6303–6308 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Klebanoff, S. J. Myeloperoxidase: friend and foe. J. Leukoc. Biol. 77, 598–625 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. Foster, T. J. Immune evasion by staphylococci. Nat. Rev. Microbiol. 3, 948–958 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Howden, B. P. et al. Staphylococcus aureus host interactions and adaptation. Nat. Rev. Microbiol. 21, 380–395 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Thammavongsa, V., Missiakas, D. M. & Schneewind, O. Staphylococcus aureus degrades neutrophil extracellular traps to promote immune cell death. Science 342, 863–866 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Myles, I. A. et al. Signaling via the IL-20 receptor inhibits cutaneous production of IL-1β and IL-17A to promote infection with methicillin-resistant Staphylococcus aureus. Nat. Immunol. 14, 804–811 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Schmaler, M., Jann, N. J., Ferracin, F. & Landmann, R. T and B cells are not required for clearing Staphylococcus aureus in systemic infection despite a strong TLR2–MyD88-dependent T cell activation. J. Immunol. 186, 443–452 (2011).

    Article  CAS  PubMed  Google Scholar 

  87. Ren, X., Zou, L. & Holmgren, A. Targeting bacterial antioxidant systems for antibiotics development. Curr. Med. Chem. 27, 1922–1939 (2020).

    Article  CAS  PubMed  Google Scholar 

  88. Harbut, M. B. et al. Auranofin exerts broad-spectrum bactericidal activities by targeting thiol-redox homeostasis. Proc. Natl Acad. Sci. USA 112, 4453–4458 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lu, J. et al. Inhibition of bacterial thioredoxin reductase: an antibiotic mechanism targeting bacteria lacking glutathione. FASEB J. 27, 1394–1403 (2013).

    Article  CAS  PubMed  Google Scholar 

  90. Luk, B. T. et al. Interfacial interactions between natural RBC membranes and synthetic polymeric nanoparticles. Nanoscale 6, 2730–2737 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lv, W. et al. Bioengineered boronic ester modified dextran polymer nanoparticles as reactive oxygen species responsive nanocarrier for ischemic stroke treatment. ACS Nano 12, 5417–5426 (2018).

    Article  CAS  PubMed  Google Scholar 

  92. Hall, G. S. Bailey & Scott’s Diagnostic Microbiology, 13th edn. Laboratory Medicine 44, e138–e139 (2013).

  93. Peng, B. et al. Fluorescent probes based on nucleophilic substitution–cyclization for hydrogen sulfide detection and bioimaging. Chem.–A Eur. J. 20, 1010–1016 (2014).

    Article  CAS  Google Scholar 

  94. Lee, A. S. et al. Methicillin-resistant Staphylococcus aureus. Nat. Rev. Dis. Prim. 4, 1–23 (2018).

    Google Scholar 

  95. Kim, W. et al. A new class of synthetic retinoid antibiotics effective against bacterial persisters. Nature 556, 103–107 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Merritt, J. H., Kadouri, D. E. & O’Toole, G. A. Growing and analyzing static biofilms. Curr. Protoc. Microbiol. 22, 1B.1.1–1B.1.18 (2011).

    Article  Google Scholar 

  97. Lu, M. et al. Bacteria-specific phototoxic reactions triggered by blue light and phytochemical carvacrol. Sci. Transl. Med. 13, eaba3571 (2021).

    Article  CAS  PubMed  Google Scholar 

  98. Drummen, G. P., van Liebergen, L. C., den Kamp, J. A. O. & Post, J. A. C11-BODIPY581/591, an oxidation-sensitive fluorescent lipid peroxidation probe: (micro) spectroscopic characterization and validation of methodology. Free Radic. Biol. Med. 33, 473–490 (2002).

    Article  CAS  PubMed  Google Scholar 

  99. Monogue, M. L., Thabit, A. K., Hamada, Y. & Nicolau, D. P. Antibacterial efficacy of eravacycline in vivo against Gram-positive and Gram-negative organisms. Antimicrob. Agents Chemother. 60, 5001–5005 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Harrison, E. M. et al. Genomic identification of cryptic susceptibility to penicillins and β-lactamase inhibitors in methicillin-resistant Staphylococcus aureus. Nat. Microbiol. 4, 1680–1691 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Kumar, A., Accorsi, A., Rhee, Y. & Girgenrath, M. Do’s and don’ts in the preparation of muscle cryosections for histological analysis. J. Vis. Exp. 15, e52793 (2015).

    Google Scholar 

  102. Ye, M. et al. pH‐responsive polymer–drug conjugate: an effective strategy to combat the antimicrobial resistance. Adv. Funct. Mater. 30, 2002655 (2020).

    Article  CAS  Google Scholar 

  103. Inoshima, I. et al. A Staphylococcus aureus pore-forming toxin subverts the activity of ADAM10 to cause lethal infection in mice. Nat. Med. 17, 1310–1314 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Hua, L. et al. Assessment of an anti-α-toxin monoclonal antibody for prevention and treatment of Staphylococcus aureus-induced pneumonia. Antimicrob. Agents Chemother. 58, 1108–1117 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Mortin, L. I. et al. Rapid bactericidal activity of daptomycin against methicillin-resistant and methicillin-susceptible Staphylococcus aureus peritonitis in mice as measured with bioluminescent bacteria. Antimicrob. Agents Chemother. 51, 1787–1794 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Surewaard, B. G. et al. Identification and treatment of the Staphylococcus aureus reservoir in vivo. J. Exp. Med. 213, 1141–1151 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Wozniak, J. M. et al. Mortality risk profiling of Staphylococcus aureus bacteremia by multi-omic serum analysis reveals early predictive and pathogenic signatures. Cell 182, 1311–1327. e1314 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the National Institutes of Health (R21AI156253 and R01AI177173 to S.G.), an Advancing Vision Science Professorship from the University of Wisconsin–Madison, the Retina Research Foundation Edwin and Dorothy Gamewell Professorship, and the Wisconsin Institute for Discovery. We thank J. Handelsman for her help with this work. Figures 1a–d, 2a,e,i, 3e, 5a,g and 6a,e were created with BioRender.com (agreement number NJ26II9FBU).

Author information

Authors and Affiliations

Authors

Contributions

J.Z. and S.G. conceived the project and designed the experiments. J.Z., R.G., Y.Z., N.Y., M.Z., J.C.B, M.Y. and Y.T. performed experiments and analysed the data. R.X., Y.Z., N.Y., M.Z., M.Y. and Y.T. provided technical input on this project. J.Z., R.X. and S.G. drafted the paper. S.G. supervised the project.

Corresponding author

Correspondence to Shaoqin Gong.

Ethics declarations

Competing interests

J.Z. and S.G. are inventors of a pending patent application filed by the Wisconsin Alumni Research Foundation. The other authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Keira Melican and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Figs. 1–22 and Table 1.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, J., Xie, R., Gao, R. et al. Multimodal nanoimmunotherapy engages neutrophils to eliminate Staphylococcus aureus infections. Nat. Nanotechnol. (2024). https://doi.org/10.1038/s41565-024-01648-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41565-024-01648-8

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research