Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Regulation of quantum spin conversions in a single molecular radical

Abstract

Free radicals, generally formed through the cleavage of covalent electron-pair bonds, play an important role in diverse fields ranging from synthetic chemistry to spintronics and nonlinear optics. However, the characterization and regulation of the radical state at a single-molecule level face formidable challenges. Here we present the detection and sophisticated tuning of the open-shell character of individual diradicals with a donor–acceptor structure via a sensitive single-molecule electrical approach. The radical is sandwiched between nanogapped graphene electrodes via covalent amide bonds to construct stable graphene–molecule–graphene single-molecule junctions. We measure the electrical conductance as a function of temperature and track the evolution of the closed-shell and open-shell electronic structures in real time, the open-shell triplet state being stabilized with increasing temperature. Furthermore, we tune the spin states by external stimuli, such as electrical and magnetic fields, and extract thermodynamic and kinetic parameters of the transition between closed-shell and open-shell states. Our findings provide insights into the evolution of single-molecule radicals under external stimuli, which may proof instrumental for the development of functional quantum spin-based molecular devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Single-molecule device structure and molecular characterization.
Fig. 2: Temperature-dependent measurements and signal attributions.
Fig. 3: Bias-voltage-dependent measurements and regulation of the electronic structure via EEFs.
Fig. 4: Magnetic-field-dependent measurements and regulation of the electronic structures.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the paper and Supplementary Information. The datasets used in Supplementary Information are available online from the Zenodo repository at https://zenodo.org/records/10603012. Source data are provided with this paper.

References

  1. Dery, H., Dalal, P., Cywinski, L. & Sham, L. J. Spin-based logic in semiconductors for reconfigurable large-scale circuits. Nature 447, 573–576 (2007).

    Article  CAS  PubMed  ADS  Google Scholar 

  2. Vincent, R., Klyatskaya, S., Ruben, M., Wernsdorfer, W. & Balestro, F. Electronic read-out of a single nuclear spin using a molecular spin transistor. Nature 488, 357–360 (2012).

    Article  CAS  PubMed  ADS  Google Scholar 

  3. Baek, S. H. C. et al. Complementary logic operation based on electric-field controlled spin-orbit torques. Nat. Electron. 1, 398–403 (2018).

    Article  Google Scholar 

  4. Fert, A., Reyren, N. & Cros, V. Magnetic skyrmions: advances in physics and potential applications. Nat. Rev. Mater. 2, 17031 (2017).

    Article  CAS  ADS  Google Scholar 

  5. Gehring, P., Thijssen, J. M. & van der Zant, H. S. J. Single-molecule quantum-transport phenomena in break junctions. Nat. Rev. Phys. 1, 381–396 (2019).

    Article  Google Scholar 

  6. Berciu, M., Rappoport, T. G. & Janko, B. Manipulating spin and charge in magnetic semiconductors using superconducting vortices. Nature 435, 71–75 (2005).

    Article  CAS  PubMed  ADS  Google Scholar 

  7. Bracher, T. et al. Detection of short-waved spin waves in individual microscopic spin-wave waveguides using the inverse spin hall effect. Nano Lett. 17, 7234–7241 (2017).

    Article  CAS  PubMed  ADS  Google Scholar 

  8. Tong, M. et al. Light-driven spintronic heterostructures for coded terahertz emission. ACS Nano 16, 8294–8300 (2022).

    Article  CAS  PubMed  Google Scholar 

  9. Simao, C. et al. A robust molecular platform for non-volatile memory devices with optical and magnetic responses. Nat. Chem. 3, 359–364 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Warner, M. et al. Potential for spin-based information processing in a thin-film molecular semiconductor. Nature 503, 504–508 (2013).

    Article  CAS  PubMed  ADS  Google Scholar 

  11. Lombardi, F. et al. Quantum units from the topological engineering of molecular graphenoids. Science 366, 1107–1110 (2019).

    Article  CAS  PubMed  ADS  Google Scholar 

  12. Abe, M. Diradicals. Chem. Rev. 113, 7011–7088 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Zeng, Z. et al. Pro-aromatic and anti-aromatic pi-conjugated molecules: an irresistible wish to be diradicals. Chem. Soc. Rev. 44, 6578–6596 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. Naghibi, S. et al. Redox-addressable single-molecule junctions incorporating a persistent organic radical. Angew. Chem. Int. Ed. 61, e202116985 (2022).

    Article  CAS  ADS  Google Scholar 

  15. Bejarano, F. et al. Robust organic radical molecular junctions using acetylene terminated groups for C–Au bond formation. J. Am. Chem. Soc. 140, 1691–1696 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. Zhang, X. et al. Electron spin resonance of single iron phthalocyanine molecules and role of their non-localized spins in magnetic interactions. Nat. Chem. 14, 59–65 (2021).

    Article  PubMed  ADS  Google Scholar 

  17. Shen, Y. et al. Normal & reversed spin mobility in a diradical by electron-vibration coupling. Nat. Commun. 12, 6262 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  18. Patera, L. L. et al. Resolving the unpaired-electron orbital distribution in a stable organic radical by Kondo resonance mapping. Angew. Chem. Int. Ed. 58, 11063–11067 (2019).

    Article  CAS  ADS  Google Scholar 

  19. Baum, T. Y., Andez, S. F., Pena, D. G. & van der Zant, H. S. J. Magnetic fingerprints in an all-organic radical molecular break junction. Nano Lett. 22, 8086–8092 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  20. Hayakawa, R. et al. Large magnetoresistance in single-radical molecular junctions. Nano Lett. 16, 4960–4967 (2016).

    Article  CAS  PubMed  ADS  Google Scholar 

  21. Mitra, G. et al. Interplay between magnetoresistance and Kondo resonance in radical single-molecule junctions. Nano Lett. 22, 5773–5779 (2022).

    Article  CAS  PubMed  ADS  Google Scholar 

  22. Pyurbeeva, E. et al. Controlling the entropy of a single-molecule junction. Nano Lett. 21, 9715–9719 (2021).

    Article  CAS  PubMed  ADS  Google Scholar 

  23. Pyurbeeva, E. & Mol, J. A. A thermodynamic approach to measuring entropy in a few-electron nanodevice. Entropy 23, 640 (2021).

    Article  MathSciNet  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  24. Bajaj, A., Khurana, R. & Ali, M. E. Quantum interference and spin filtering effects in photo-responsive single molecule devices. J. Mater. Chem. C 9, 11242–11251 (2021).

    Article  CAS  Google Scholar 

  25. Han, Y. et al. Electric-field-driven dual-functional molecular switches in tunnel junctions. Nat. Mater. 19, 843–848 (2020).

    Article  CAS  PubMed  ADS  Google Scholar 

  26. Fock, J. et al. Manipulation of organic polyradicals in a single-molecule transistor. Phys. Rev. B 86, 235403 (2012).

    Article  ADS  Google Scholar 

  27. Li, L. et al. Highly conducting single-molecule topological insulators based on mono- and di-radical cations. Nat. Chem. 14, 1061–1067 (2022).

    Article  CAS  PubMed  Google Scholar 

  28. Chen, Z. et al. Evolution of the electronic structure in open-shell donor–acceptor organic semiconductors. Nat. Commun. 12, 5889 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  29. Li, Y., Li, L., Wu, Y. & Li, Y. A review on the origin of synthetic metal radical: singlet open-shell radical ground state? J. Phys. Chem. C 121, 8579–8588 (2017).

    Article  CAS  Google Scholar 

  30. Chen, Z. et al. Aggregation-induced radical of donor–acceptor organic semiconductors. J. Phys. Chem. Lett. 12, 9783–9790 (2021).

    Article  CAS  PubMed  Google Scholar 

  31. Chen, Z., Li, Y. & Huang, F. Persistent and stable organic radicals: design, synthesis, and applications. Chem 7, 288–332 (2021).

    Article  CAS  Google Scholar 

  32. Lörtscher, E. Wiring molecules into circuits. Nat. Nanotechnol. 8, 381–384 (2013).

    Article  PubMed  ADS  Google Scholar 

  33. Xin, N. et al. Concepts in the design and engineering of single-molecule electronic devices. Nat. Rev. Phys. 1, 211–230 (2019).

    Article  Google Scholar 

  34. Jia, C. et al. Covalently bonded single-molecule junctions with stable and reversible photoswitched conductivity. Science 352, 1443–1445 (2016).

    Article  CAS  PubMed  ADS  Google Scholar 

  35. Meng, L. et al. Dual-gated single-molecule field-effect transistors beyond Moore’s law. Nat. Commun. 13, 1410 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  36. Yang, C. et al. Complete deciphering of the dynamic stereostructures of a single aggregation-induced emission molecule. Matter 5, 1224–1234 (2022).

    Article  CAS  Google Scholar 

  37. Xin, N. et al. Stereoelectronic effect-induced conductance switching in aromatic chain single-molecule junctions. Nano Lett. 17, 856–861 (2017).

    Article  CAS  PubMed  ADS  Google Scholar 

  38. Yang, C. et al. Unveiling the full reaction path of the Suzuki–Miyaura cross-coupling in a single-molecule junction. Nat. Nanotechnol. 16, 1214–1223 (2021).

    Article  CAS  PubMed  ADS  Google Scholar 

  39. Yang, C. et al. Electric field-catalyzed single-molecule Diels–Alder reaction dynamics. Sci. Adv. 7, eabf0689 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  40. Cao, Y. et al. Building high-throughput molecular junctions using indented graphene point contacts. Angew. Chem. Int. Ed. 51, 12228–12232 (2012).

    Article  CAS  Google Scholar 

  41. Yang, C., Yang, C., Guo, Y., Feng, J. & Guo, X. Graphene–molecule–graphene single-molecule junctions to detect electronic reactions at the molecular scale. Nat. Protoc. 18, 1958–1978 (2023).

    Article  CAS  PubMed  Google Scholar 

  42. Mol, J. A. et al. Graphene–porphyrin single-molecule transistors. Nanoscale 7, 13181–13185 (2015).

    Article  CAS  PubMed  ADS  Google Scholar 

  43. Gehring, P. et al. Field-effect control of graphene–fullerene thermoelectric nanodevices. Nano Lett. 17, 7055–7061 (2017).

    Article  CAS  PubMed  ADS  Google Scholar 

  44. Gehring, P. et al. Quantum interference in graphene nanoconstrictions. Nano Lett. 16, 4210–4216 (2016).

    Article  MathSciNet  CAS  PubMed  ADS  Google Scholar 

  45. Hayashi, H. et al. Monoradicals and diradicals of dibenzofluoreno[3,2-b]fluorene isomers: mechanisms of electronic delocalization. J. Am. Chem. Soc. 142, 20444–20455 (2020).

    Article  CAS  Google Scholar 

  46. Dressler, J. J. et al. Thiophene and its sulfur inhibit indenoindenodibenzothiophene diradicals from low-energy lying thermal triplets. Nat. Chem. 10, 1134–1140 (2018).

    Article  CAS  PubMed  Google Scholar 

  47. Qin, F., Auerbach, A. & Sachs, F. Estimating single-channel kinetic parameters from idealized patch clamp data containing missed events. Biophys. J. 70, 264–280 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Huang, X. et al. Electric field–induced selective catalysis of single-molecule reaction. Sci. Adv. 5, eaaw3072 (2019).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  49. Frisch, M. J. et al. Gaussian16 Revision C.01 (Gaussian, 2016).

  50. Yamaguchi, K. The electronic structures of biradicals in the unrestricted Hartree–Fock approximation. Chem. Phys. Lett. 33, 330–335 (1975).

    Article  CAS  ADS  Google Scholar 

  51. Schleyer, P. V. R. et al. Dissected nucleus-independent chemical shift analysis of π-aromaticity and antiaromaticity. Org. Lett. 3, 2465–2468 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Neese, F. The ORCA program system. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2, 73–78 (2012).

    Article  CAS  Google Scholar 

  53. Grimme, S. & Hansen, A. A practicable real‐space measure and visualization of static electron correlation effects. Angew. Chem. Int. Ed. 54, 12308–12313 (2005).

    Article  Google Scholar 

  54. Wang, M. et al. Donor-acceptor conjugated polymer based on naphtho[1,2-c:5,6-c]bis[1,2,5]thiadiazole for high-performance polymer solar cells. J. Am. Chem. Soc. 133, 9638–9641 (2011).

    Article  CAS  PubMed  Google Scholar 

  55. Brandbyge, M., Mozos, J. L., Ordejón, P., Taylor, J. & Stokbro, K. Density-functional method for nonequilibrium electron transport. Phys. Rev. B 65, 165401 (2002).

    Article  ADS  Google Scholar 

  56. Wang, B., Wang, J. & Guo, H. Current partition: a nonequilibrium Green’s function approach. Phys. Rev. Lett. 82, 398–401 (1999).

    Article  CAS  ADS  Google Scholar 

  57. Taylor, J., Guo, H. & Wang, J. Ab initio modeling of quantum transport properties of molecular electronic devices. Phys. Rev. B 63, 245407 (2001).

    Article  ADS  Google Scholar 

  58. Soler, J. M. et al. The SIESTA method for ab initio order-N materials simulations. J. Phys. Condens. Matter 14, 2745–2779 (2002).

    Article  CAS  ADS  Google Scholar 

  59. Troullier, N. & Martins, J. A straightforward method for generating soft transferable pseudopotentials. Solid State Commun. 74, 613–616 (1990).

    Article  ADS  Google Scholar 

  60. Heyd, J., Scuseria, G. E. & Ernzerhof, M. Hybrid functionals based on a screened coulomb potential. J. Chem. Phys. 118, 8207–8215 (2003).

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge primary financial support from the National Key R&D Program of China (2021YFA1200101 (to X.G.) and 2022YFA0128700 (to X.G.)), the National Natural Science Foundation of China (22150013 (to X.G.), 21727806 (to X.G.), 21933001(to X.G.), 22288201 (to X.L.), 22322304 (to X.L.), 22375065 (to Y.L.) and 51973063 (to Y.L.)), the Tencent Foundation through the XPLORER PRIZE (to X.G.), ‘Frontiers Science Center for New Organic Matter’ at Nankai University (63181206 (to X.G.)), the Natural Science Foundation of Beijing (2222009 (to X.G.)), the Tip-top Scientific and Technical Innovative Youth Talents of Guangdong Special Support Program (2019TQ05C890 (to Y.L.)) and the National Science Foundation (OIA-1757220 (to N.R.)).

Author information

Authors and Affiliations

Authors

Contributions

X.G., F.H. and Y.L. conceived the idea for the paper. C.Ya., J.C. and G.K. fabricated the devices and performed the device measurements. Z.C., W.Z., W.L., J.H. and W.C. carried out the molecular synthesis and characterization. C.S., M.A.S. and N.R. performed calculations for the analysis of the open-shell character and aromaticity. C.Yu., X.L. and J.Y. built and analysed the theoretical model and performed the quantum transport calculation. X.G., F.H., Y.L. and C.Ya. analysed the data and wrote the paper. All the authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Xingxing Li, Yuan Li, Fei Huang or Xuefeng Guo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Pascal Gehring, Weida Hu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–51, Notes 1 and 2, and Supplementary Tables 1 and 2.

Source data

Source Data Fig. 1

Data for Figs. 1–4 in the main text.

Source Data Fig. 2

Chemical structures in Fig. 1b.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, C., Chen, Z., Yu, C. et al. Regulation of quantum spin conversions in a single molecular radical. Nat. Nanotechnol. (2024). https://doi.org/10.1038/s41565-024-01632-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41565-024-01632-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing