Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Submolecular-scale control of phototautomerization

Abstract

Optically activated reactions initiate biological processes such as photosynthesis or vision, but can also control polymerization, catalysis or energy conversion. Methods relying on the manipulation of light at macroscopic and mesoscopic scales are used to control on-surface photochemistry, but do not offer atomic-scale control. Here we take advantage of the confinement of the electromagnetic field at the apex of a scanning tunnelling microscope tip to drive the phototautomerization of a free-base phthalocyanine with submolecular precision. We can control the reaction rate and the relative tautomer population through a change in the laser excitation wavelength or through the tip position. Atomically resolved tip-enhanced photoluminescence spectroscopy and hyperspectral mapping unravel an excited-state mediated process, which is quantitatively supported by a comprehensive theoretical model combining ab initio calculations with a parametric open-quantum-system approach. Our experimental strategy may allow insights in other photochemical reactions and proof useful to control complex on-surface reactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Phototautomerization of an individual molecule.
Fig. 2: H2Pc phototautomerization controlled by incoming photon energy.
Fig. 3: Submolecular control of the phototautomerization rate by local plasmonic fields.
Fig. 4: Submolecular control of the tautomer configuration population.

Similar content being viewed by others

Data availability

Source data are available via Zenodo at https://doi.org/10.5281/zenodo.10547040. Additional datasets are available from the corresponding authors upon reasonable request.

Code availability

The code used to calculate the results shown in this work is available from the corresponding authors upon reasonable request.

References

  1. Mirkovic, T. et al. Light absorption and energy transfer in the antenna complexes of photosynthetic organisms. Chem. Rev. 117, 249–293 (2017).

    Article  CAS  PubMed  Google Scholar 

  2. Bleger, D. & Hecht, S. Visible-light-activated molecular switches. Angew. Chem. Int. Ed. 54, 11338–11349 (2015).

    Article  CAS  Google Scholar 

  3. Corrigan, N., Yeow, J., Judzewitsch, P., Xu, J. & Boyer, C. Seeing the light: advancing materials chemistry through photopolymerization. Angew. Chem. Int. Ed. 58, 5170–5189 (2019).

    Article  CAS  Google Scholar 

  4. Twilton, J. et al. The merger of transition metal and photocatalysis. Nat. Rev. Chem. 1, 0052 (2017).

    Article  CAS  Google Scholar 

  5. Völker, S. & van der Waals, J. Laser-induced photochemical isomerization of free base porphyrin in an n-octane crystal at 4.2 K. Mol. Phys. 32, 1703–1718 (1976).

    Article  ADS  Google Scholar 

  6. Hutchison, J. A., Schwartz, T., Genet, C., Devaux, E. & Ebbesen, T. W. Modifying chemical landscapes by coupling to vacuum fields. Angew. Chem. Int. Ed. 51, 1592–1596 (2012).

    Article  CAS  Google Scholar 

  7. Mukherjee, S. et al. Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au. Nano Lett. 13, 240–247 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Böckmann, H. et al. Direct observation of photoinduced tautomerization in single molecules at a metal surface. Nano Lett. 16, 1034–1041 (2016).

    Article  ADS  PubMed  Google Scholar 

  9. Böckmann, H. et al. Near-field enhanced photochemistry of single molecules in a scanning tunneling microscope junction. Nano Lett. 18, 152–157 (2018).

    Article  ADS  PubMed  Google Scholar 

  10. Kazuma, E., Jung, J., Ueba, H., Trenary, M. & Kim, Y. Real-space and real-time observation of a plasmon-induced chemical reaction of a single molecule. Science 360, 521–526 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Li, S. et al. Bond-selected photodissociation of single molecules adsorbed on metal surfaces. Phys. Rev. Lett. 122, 077401 (2019).

    Article  ADS  PubMed  Google Scholar 

  12. Qiu, X. H., Nazin, G. V. & Ho, W. Vibrationally resolved fluorescence excited with submolecular precision. Science 299, 542–546 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Merino, P., Große, C., Rosławska, A., Kuhnke, K. & Kern, K. Exciton dynamics of C60-based single-photon emitters explored by Hanbury Brown-Twiss scanning tunnelling microscopy. Nat. Commun. 6, 8461 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Zhang, Y. et al. Visualizing coherent intermolecular dipole–dipole coupling in real space. Nature 531, 623–627 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Imada, H. et al. Real-space investigation of energy transfer in heterogeneous molecular dimers. Nature 538, 364–367 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Doppagne, B. et al. Electrofluorochromism at the single-molecule level. Science 361, 251–255 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Kaiser, K., Gross, L. & Schulz, F. A single-molecule chemical reaction studied by high-resolution atomic force microscopy and scanning tunneling microscopy induced light emission. ACS Nano 13, 6947–6954 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Doppagne, B. et al. Single-molecule tautomerization tracking through space- and time-resolved fluorescence spectroscopy. Nat. Nanotechnol. 15, 207–211 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Yang, B. et al. Sub-nanometre resolution in single-molecule photoluminescence imaging. Nat. Photon. 14, 693–699 (2020).

    Article  ADS  CAS  Google Scholar 

  20. Rosławska, A. et al. Gigahertz frame rate imaging of charge-injection dynamics in a molecular light source. Nano Lett. 21, 4577–4583 (2021).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  21. Cao, S. et al. Energy funnelling within multichromophore architectures monitored with subnanometre resolution. Nat. Chem. 13, 766–770 (2021).

    Article  CAS  PubMed  Google Scholar 

  22. Imada, H. et al. Single-molecule laser nanospectroscopy with micro–electron volt energy resolution. Science 373, 95–98 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Imai-Imada, M. et al. Orbital-resolved visualization of single-molecule photocurrent channels. Nature 603, 829–834 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Rosławska, A. et al. Mapping Lamb, Stark, and Purcell effects at a chromophore-picocavity junction with hyper-resolved fluorescence microscopy. Phys. Rev. X 12, 011012 (2022).

    Google Scholar 

  25. Doležal, J. et al. Evidence of exciton-libron coupling in chirally adsorbed single molecules. Nat. Commun. 13, 6008 (2022).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  26. Imada, H., Imai-Imada, M., Ouyang, X., Muranaka, A. & Kim, Y. Anti-Kasha emissions of single molecules in a plasmonic nanocavity. J. Chem. Phys. 157, 104302 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Zhang, R. et al. Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature 498, 82–86 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Lee, J., Crampton, K. T., Tallarida, N. & Apkarian, V. A. Visualizing vibrational normal modes of a single molecule with atomically confined light. Nature 568, 78–82 (2019).

    Article  PubMed  Google Scholar 

  29. Liu, S. et al. Resolving the correlation between tip-enhanced resonance Raman scattering and local electronic states with 1 nm resolution. Nano Lett. 19, 5725–5731 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li, L. et al. Angstrom-scale spectroscopic visualization of interfacial interactions in an organic/borophene vertical heterostructure. J. Am. Chem. Soc. 143, 15624–15634 (2021).

    Article  CAS  PubMed  Google Scholar 

  31. Orrit, M. & Bernard, J. Single pentacene molecules detected by fluorescence excitation in a p-terphenyl crystal. Phys. Rev. Lett. 65, 2716–2719 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Anger, P., Bharadwaj, P. & Novotny, L. Enhancement and quenching of single-molecule fluorescence. Phys. Rev. Lett. 96, 113002 (2006).

    Article  ADS  PubMed  Google Scholar 

  33. Kühn, S., Håkanson, U., Rogobete, L. & Sandoghdar, V. Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. Phys. Rev. Lett. 97, 017402 (2006).

    Article  ADS  PubMed  Google Scholar 

  34. Chen, T. et al. Optical super-resolution imaging of surface reactions. Chem. Rev. 117, 7510–7537 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  35. Trebbia, J.-B., Deplano, Q., Tamarat, P. & Lounis, B. Tailoring the superradiant and subradiant nature of two coherently coupled quantum emitters. Nat. Commun. 13, 2962 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kügel, J., Klein, L., Leisegang, M. & Bode, M. Analyzing and tuning the energetic landscape of H2Pc tautomerization. J. Phys. Chem. C 121, 28204–28210 (2017).

    Article  Google Scholar 

  37. Liljeroth, P., Repp, J. & Meyer, G. Current-induced hydrogen tautomerization and conductance switching of naphthalocyanine molecules. Science 317, 1203–1206 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Auwärter, W. et al. A surface-anchored molecular four-level conductance switch based on single proton transfer. Nat. Nanotechnol. 7, 41–46 (2012).

    Article  ADS  Google Scholar 

  39. Kumagai, T. et al. Controlling intramolecular hydrogen transfer in a porphycene molecule with single atoms or molecules located nearby. Nat. Chem. 6, 41–46 (2013).

    Article  PubMed  Google Scholar 

  40. Kumagai, T. et al. Thermally and vibrationally induced tautomerization of single porphycene molecules on a Cu(110) surface. Phys. Rev. Lett. 111, 246101 (2013).

    Article  ADS  PubMed  Google Scholar 

  41. Murray, C. et al. Visible luminescence spectroscopy of free-base and zinc phthalocyanines isolated in cryogenic matrices. Phys. Chem. Chem. Phys. 13, 17543–17554 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Coohill, T. P. Action spectra again? Photochem. Photobiol. 54, 859–870 (1991).

    Article  CAS  PubMed  Google Scholar 

  43. Urbieta, M. et al. Atomic-scale lightning rod effect in plasmonic picocavities: a classical view to a quantum effect. ACS Nano 12, 585–595 (2018).

    Article  CAS  PubMed  Google Scholar 

  44. Comstock, M. J. et al. Reversible photomechanical switching of individual engineered molecules at a metallic surface. Phys. Rev. Lett. 99, 038301 (2007).

    Article  ADS  PubMed  Google Scholar 

  45. Bazarnik, M., Henzl, J., Czajka, R. & Morgenstern, K. Light driven reactions of single physisorbed azobenzenes. Chem. Commun. 47, 7764 (2011).

    Article  CAS  Google Scholar 

  46. Nacci, C., Baroncini, M., Credi, A. & Grill, L. Reversible photoswitching and isomer-dependent diffusion of single azobenzene tetramers on a metal surface. Angew. Chem. Int. Ed. 57, 15034–15039 (2018).

    Article  CAS  Google Scholar 

  47. Miura, A. et al. Light- and STM-tip-induced formation of one-dimensional and two-dimensional organic nanostructures. Langmuir 19, 6474–6482 (2003).

    Article  CAS  Google Scholar 

  48. Para, F. et al. Micrometre-long covalent organic fibres by photoinitiated chain-growth radical polymerization on an alkali-halide surface. Nat. Chem. 10, 1112–1117 (2018).

    Article  CAS  PubMed  Google Scholar 

  49. Clair, S. & de Oteyza, D. G. Controlling a chemical coupling reaction on a surface: tools and strategies for on-surface synthesis. Chem. Rev. 119, 4717–4776 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Grossmann, L. et al. On-surface photopolymerization of two-dimensional polymers ordered on the mesoscale. Nat. Chem. 13, 730–736 (2021).

    Article  CAS  PubMed  Google Scholar 

  51. Garg, M. & Kern, K. Attosecond coherent manipulation of electrons in tunneling microscopy. Science 367, 411–415 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  52. Peller, D. et al. Sub-cycle atomic-scale forces coherently control a single-molecule switch. Nature 585, 58–62 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  53. Zhang, C. et al. Fabrication of silver tips for scanning tunneling microscope induced luminescence. Rev. Sci. Instrum. 82, 083101 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  54. Ramanauskaite, L., Xu, H., Griskonis, E., Batiuskaite, D. & Snitka, V. Comparison and evaluation of silver probe preparation techniques for tip-enhanced Raman spectroscopy. Plasmonics 13, 1907–1919 (2018).

    Article  CAS  Google Scholar 

  55. Lombana, A. et al. Nanoscale mapping of photo-induced charge carriers generated at interfaces of a donor/acceptor 2D-assembly by light-assisted-scanning tunneling microscopy. Adv. Mater. Interfaces 7, 2001325 (2020).

    Article  MathSciNet  CAS  Google Scholar 

  56. Kim, Y., Motobayashi, K., Frederiksen, T., Ueba, H. & Kawai, M. Action spectroscopy for single-molecule reactions—experiments and theory. Prog. Surf. Sci. 90, 85–143 (2015).

    Article  ADS  CAS  Google Scholar 

  57. Liu, S., Hammud, A., Wolf, M. & Kumagai, T. Anti-Stokes light scattering mediated by electron transfer across a biased plasmonic nanojunction. ACS Photonics 8, 2610–2617 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank V. Speisser and H. Sumar for technical support; G. Rogez for help with ultraviolet–visible spectroscopy; and A. Boeglin, L. E. P. López, S. Jiang, Ó. J. Arrate and A. Borissov for discussions. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 771850) (G.S., F.S. and A.R.), the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement no. 894434 (A.R.) and the SNSF under the Postdoc.Mobility grant agreement no. 206912 (K.K.). This work is supported by ‘Investissements d’Avenir’ LabEx PALM (ANR-10-LABX-0039-PALM) (T.N.). T.N. acknowledges the Lumina Quaeruntur fellowship of the Czech Academy of Sciences. Computational resources were supplied by the project ‘e-Infrastruktura CZ’ (e-INFRA CZ LM2018140) supported by the Ministry of Education, Youth and Sports of the Czech Republic. We acknowledge financial support from the Agence Nationale de la Recherche under grant ATOEMS ANR-20-CE24-0010 (S.B.).

Author information

Authors and Affiliations

Authors

Contributions

A.R. and G.S. conceived the project. A.R., K.K., M.R., F.S., S.B. and G.S performed the experiments and analysed the data. E.D. etched the STM tips using a focused ion beam. T.N. performed the theoretical calculations and analysed the results. All authors discussed the results and contributed to revisions of the paper.

Corresponding authors

Correspondence to Anna Rosławska, Tomáš Neuman or Guillaume Schull.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 STM characterization and the scheme of the experimental set-up.

a, STM overview image of the H2Pc/NaCl/Ag(111) sample, ML - monolayers. Size: 36.5 × 36.5 nm2, V = -2.5 V, I = 5 pA. b, Optical set-up used in the experiment. SPF - shortpass filter, LPF - longpass filter, BS - beamsplitter.

Extended Data Fig. 2 Tautomerization analysis.

a, Current time trace with tautomerization events marked by ’ × ’. b, Numerical derivative of a. c, Histogram of current values in a, the solid line represents a fit, which is a sum of two Gaussians. d, Difference image obtained by subtracting the images representing configuration A and configuration B. Parameters: V = 0.55 V, I = 10 pA, P ≈ 15 μW, hνin = 2.00 eV, scale bar: 1 nm.

Extended Data Fig. 3 Characterization of TEPL and tautomerization.

a-c, TEPL intensity (orange rectangles) and tautomerization frequency (grey circles) of H2Pc recorded as a function of the laser power for three different excitation energies. All measurements are recorded at the extremity of a pyrrole unit. Integration range of the TEPL spectra: 1.79-1-82 eV, V = 0.55 V, current set-point I = 2 pA, the light intensity is corrected for the detection efficiency. The solid lines are linear fits to the data. d, PLE spectra recorded for two different laser beam alignments that are optimized for 1.82 eV and 1.84 eV excitation energy, respectively. The feature that corresponds to the Qx resonance (1.81 eV) is clearly visible on top of the broad distribution that is centred around the optimal excitation wavelength. The traces are vertically offset for clarity. P < 1μW, I = 10 pA, V = 0.55 V. e, TEPL spectra recorded on a decoupled H2Pc molecule (black line) on NaCl/Ag(111) (V = 0.55 V) and on clean (grey line) NaCl/Ag(111) (V = - 1 V). hνin = 1.953 eV, P ≈ 15μW, I = 2 pA, t = 90 s. The longpass filter (LPF) edge is indicated. f, Background-corrected TEPL spectrum.

Supplementary information

Supplementary Information

Supplementary Sections 1–9, Figs. 1–7, Table 1 and discussion.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosławska, A., Kaiser, K., Romeo, M. et al. Submolecular-scale control of phototautomerization. Nat. Nanotechnol. (2024). https://doi.org/10.1038/s41565-024-01622-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41565-024-01622-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing