Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Adapted poling to break the nonlinear efficiency limit in nanophotonic lithium niobate waveguides

Abstract

Nonlinear frequency mixing is a method to extend the wavelength range of optical sources with applications in quantum information and photonic signal processing. Lithium niobate with periodic poling is the most widely used material for frequency mixing due to its strong second-order nonlinear coefficient. The recent development using nanophotonic lithium niobate waveguides promises to improve nonlinear efficiencies by orders of magnitude thanks to subwavelength optical confinement. However, the intrinsic nanoscale inhomogeneity of nanophotonic lithium niobate waveguides limits the coherent interaction length, leading to low nonlinear efficiencies. Here we show improved second-order nonlinear efficiency in nanophotonic lithium niobate waveguides that breaks the limit imposed by nanoscale inhomogeneity. This is realized by developing the adapted poling approach to eliminate the impact of nanoscale inhomogeneity. We realize an overall second-harmonic efficiency of 104% W−1 (without cavity enhancement), approaching the theoretical performance for nanophotonic lithium niobate waveguides. The ideal square dependence of the nonlinear efficiency on the waveguide length is recovered. Phase-matching bandwidths and temperature tuneability are improved through dispersion engineering. We finally demonstrate a conversion ratio from pump to second-harmonic power greater than 80% in a single-pass configuration with pump power as low as 20 mW. Our work therefore breaks the trade-off between the conversion ratio and pump power, offering a potential solution for highly efficient and scalable nonlinear-optical sources, amplifiers and converters.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Adapted poling for nanophotonic lithium niobate waveguides with nanoscale inhomogeneity.
Fig. 2: Performance comparison between periodic and adapted poling approaches.
Fig. 3: Ultra-efficient nanophotonic lithium niobate waveguides.
Fig. 4: Towards ultimate second-order nonlinearity performance.

Similar content being viewed by others

Data availability

The data generated and/or analysed in this work are available from the corresponding author upon reasonable request.

References

  1. Weis, R. & Gaylord, T. Lithium niobate: summary of physical properties and crystal structure. Appl. Phys. A 37, 191–203 (1985).

    Article  Google Scholar 

  2. Schliesser, A., Picqué, N. & Hänsch, T. W. Mid-infrared frequency combs. Nat. Photonics 6, 440–449 (2012).

    Article  CAS  Google Scholar 

  3. Ghimire, S. & Reis, D. A. High-harmonic generation from solids. Nat. Physics 15, 10–16 (2019).

    Article  CAS  Google Scholar 

  4. Buryak, A. V., Di Trapani, P., Skryabin, D. V. & Trillo, S. Optical solitons due to quadratic nonlinearities: from basic physics to futuristic applications. Phys. Rep. 370, 63–235 (2002).

    Article  CAS  Google Scholar 

  5. O’Brien, J. L., Furusawa, A. & Vučković, J. Photonic quantum technologies. Nat. Photonics 3, 687–695 (2009).

    Article  Google Scholar 

  6. Wehner, S., Elkouss, D. & Hanson, R. Quantum internet: a vision for the road ahead. Science 362, 9288 (2018).

    Article  Google Scholar 

  7. He, G. S. Optical phase conjugation: principles, techniques, and applications. Prog. Quantum Electron. 26, 131–191 (2002).

    Article  Google Scholar 

  8. Cerullo, G. & De Silvestri, S. Ultrafast optical parametric amplifiers. Rev. Sci. Instrum. 74, 1–18 (2003).

    Article  CAS  Google Scholar 

  9. Langrock, C., Kumar, S., McGeehan, J. E., Willner, A. & Fejer, M. All-optical signal processing using/spl chi//sup (2)/nonlinearities in guided-wave devices. J. Light. Technol. 24, 2579–2592 (2006).

    Article  Google Scholar 

  10. Wooten, E. L. et al. A review of lithium niobate modulators for fiber-optic communications systems. IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).

    Article  CAS  Google Scholar 

  11. Elshaari, A. W., Pernice, W., Srinivasan, K., Benson, O. & Zwiller, V. Hybrid integrated quantum photonic circuits. Nat. Photonics 14, 285–298 (2020).

    Article  CAS  Google Scholar 

  12. Zhu, D. et al. Integrated photonics on thin-film lithium niobate. Adv. Opt. Photonics 13, 242–352 (2021).

    Article  Google Scholar 

  13. Boes, A. et al. Lithium niobate photonics: unlocking the electromagnetic spectrum. Science 379, eabj4396 (2023).

    Article  CAS  Google Scholar 

  14. Wang, C. et al. Integrated lithium niobate electro-optic modulators operating at cmos-compatible voltages. Nature 562, 101–104 (2018).

    Article  CAS  Google Scholar 

  15. Xu, M. et al. High-performance coherent optical modulators based on thin-film lithium niobate platform. Nat. Commun. 11, 3911 (2020).

    Article  CAS  Google Scholar 

  16. Li, M. et al. Lithium niobate photonic-crystal electro-optic modulator. Nat. Commun. 11, 4123 (2020).

    Article  CAS  Google Scholar 

  17. Zhang, M. et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature 568, 373–377 (2019).

    Article  CAS  Google Scholar 

  18. Shah, M., Briggs, I., Chen, P.-K., Hou, S. & Fan, L. Visible-telecom tunable dual-band optical isolator based on dynamic modulation in thin-film lithium niobate. Opt. Lett. 48, 1978–1981 (2023).

    Article  CAS  Google Scholar 

  19. Xu, Y. et al. Bidirectional interconversion of microwave and light with thin-film lithium niobate. Nat. Commun. 12, 4453 (2021).

    Article  CAS  Google Scholar 

  20. Umeki, T., Tadanaga, O. & Asobe, M. Highly efficient wavelength converter using direct-bonded ppznln ridge waveguide. IEEE J. Quantum Electron. 46, 1206–1213 (2010).

    Article  CAS  Google Scholar 

  21. Kashiwazaki, T. et al. Continuous-wave 6-db-squeezed light with 2.5-tHz-bandwidth from single-mode ppln waveguide. APL Photonics 5, 036104 (2020).

    Article  CAS  Google Scholar 

  22. Parameswaran, K. R. et al. Highly efficient second-harmonic generation in buried waveguides formed by annealed and reverse proton exchange in periodically poled lithium niobate. Opt. Lett. 27, 179–181 (2002).

    Article  CAS  Google Scholar 

  23. Parameswaran, K. R., Kurz, J. R., Roussev, R. V. & Fejer, M. M. Observation of 99% pump depletion in single-pass second-harmonic generation in a periodically poled lithium niobate waveguide. Opt. Lett. 27, 43–45 (2002).

    Article  CAS  Google Scholar 

  24. Suntsov, S., Rüter, C. E., Brüske, D. & Kip, D. Watt-level 775 nm SHG with 70% conversion efficiency and 97% pump depletion in annealed/reverse proton exchanged diced PPLN ridge waveguides. Opt. Expr. 29, 11386–11393 (2021).

    Article  CAS  Google Scholar 

  25. Cho, C.-Y. et al. Power scaling of continuous-wave second harmonic generation in a mgo: Ppln ridge waveguide and the application to a compact wavelength conversion module. Opt. Lett. 46, 2852–2855 (2021).

    Article  Google Scholar 

  26. Berry, S. A., Carpenter, L. G., Gray, A. C., Smith, P. G. & Gawith, C. B. Zn-indiffused diced ridge waveguides in MGO: PPLN generating 1 watt 780 nm SHG at 70% efficiency. OSA Contin. 2, 3456–3464 (2019).

    Article  CAS  Google Scholar 

  27. Carpenter, L. G. et al. Cw demonstration of shg spectral narrowing in a ppln waveguide generating 2.5 w at 780 nm. Opt. Express 28, 21382–21390 (2020).

    Article  CAS  Google Scholar 

  28. Wang, C. et al. Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides. Optica 5, 1438–1441 (2018).

    Article  CAS  Google Scholar 

  29. Rao, A. et al. Actively-monitored periodic-poling in thin-film lithium niobate photonic waveguides with ultrahigh nonlinear conversion efficiency of 4,600%W−1 cm−2. Opt. Express 27, 25920–25930 (2019).

    Article  CAS  Google Scholar 

  30. Zhao, J. et al. Shallow-etched thin-film lithium niobate waveguides for highly-efficient second-harmonic generation. Opt. Express 28, 19669–19682 (2020).

    Article  CAS  Google Scholar 

  31. Chen, P.-K., Briggs, I., Hou, S. & Fan, L. Ultra-broadband quadrature squeezing with thin-film lithium niobate nanophotonics. Opt. Lett. 47, 1506–1509 (2022).

    Article  CAS  Google Scholar 

  32. Chang, L. et al. Thin film wavelength converters for photonic integrated circuits. Optica 3, 531–535 (2016).

    Article  CAS  Google Scholar 

  33. Boes, A. et al. Improved second harmonic performance in periodically poled lnoi waveguides through engineering of lateral leakage. Opt. Express 27, 23919–23928 (2019).

    Article  CAS  Google Scholar 

  34. Zhang, H., Li, Q., Zhu, H., Cai, L. & Hu, H. Second harmonic generation by quasi-phase matching in a lithium niobate thin film. Opt. Mater. Express 12, 2252–2259 (2022).

    Article  CAS  Google Scholar 

  35. Lu, J. et al. Periodically poled thin-film lithium niobate microring resonators with a second-harmonic generation efficiency of 250,000%/W. Optica 6, 1455–1460 (2019).

    Article  CAS  Google Scholar 

  36. Bruel, M. Silicon on insulator material technology. Electron. Lett. 31, 1201–12021 (1995).

    Article  CAS  Google Scholar 

  37. Shoji, I., Kondo, T., Kitamoto, A., Shirane, M. & Ito, R. Absolute scale of second-order nonlinear-optical coefficients. JOSA B. 14, 2268–2294 (1997).

    Article  CAS  Google Scholar 

  38. Helmfrid, S., Arvidsson, G. & Webjörn, J. Influence of various imperfections on the conversion efficiency of second-harmonic generation in quasi-phase-matching lithium niobate waveguides. JOSA B. 10, 222–229 (1993).

    Article  CAS  Google Scholar 

  39. Cui, C., Zhang, L. & Fan, L. In situ control of effective Kerr nonlinearity with pockels integrated photonics. Nat. Phys. 18, 497–501 (2022).

    Article  CAS  Google Scholar 

  40. Cui, C., Zhang, L. & Fan, L. Control spontaneous symmetry breaking of photonic chirality with reconfigurable anomalous nonlinearity. Preprint at arXiv https://arxiv.org/abs/2208.04866 (2022).

Download references

Acknowledgements

This work is supported in part by the US Department of Energy, Office of Advanced Scientific Computing Research (Field Work Proposal grant no. ERKJ355); Office of Naval Research (grant no. N00014-19-1-2190); NSF-ERC Center for Quantum Networks (grant no. EEC-1941583). The reactive ion ether used in this study was acquired through an NSF MRI grant (no. ECCS-1725571). Device fabrication was performed in the OSC cleanroom at the University of Arizona.

Author information

Authors and Affiliations

Authors

Contributions

P.-K.C. and L.F. conceived the experiment. P.-K.C. fabricated the device, performed the measurement, analysed the data and developed the simulation in useful discussion with C.C. and L.Z. P.-K.C. and I.B. optimized the poling condition. I.B. and M.S. optimized the fabrication procedure. P.-K.C. and L.F. wrote the manuscript. L.F. supervised the work.

Corresponding author

Correspondence to Linran Fan.

Ethics declarations

Competing interests

All information in this work is covered by a pending patent application (application number 63302331) filed by P.-K.C. and L.F. The other authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Andy Boes, Wolfram Pernice and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Device cross-section.

SEM image of the nanophotonic lithium niobate waveguide cross-section.

Extended Data Fig. 2 Simulated effective refractive index and poling period.

Simulated effective refractive index at wavelength 1550nm (a), 775nm (b), and poling periods (c) with different lithium niobate device thicknesses.

Extended Data Fig. 3 Temperature tunability.

Peak wavelengths of second-harmonic spectrum obtained in the 21-mm waveguide with adapted poling under different temperatures.

Extended Data Fig. 4 Dispersion engineering.

(a) Simulated group velocity mismatch, (b) temperature tuning dispersion value.

Extended Data Table 1 Comparison of different lithium niobate device designs

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, PK., Briggs, I., Cui, C. et al. Adapted poling to break the nonlinear efficiency limit in nanophotonic lithium niobate waveguides. Nat. Nanotechnol. 19, 44–50 (2024). https://doi.org/10.1038/s41565-023-01525-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-023-01525-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing