Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ultrafast exciton fluid flow in an atomically thin MoS2 semiconductor

Abstract

Excitons (coupled electron–hole pairs) in semiconductors can form collective states that sometimes exhibit spectacular nonlinear properties. Here, we show experimental evidence of a collective state of short-lived excitons in a direct-bandgap, atomically thin MoS2 semiconductor whose propagation resembles that of a classical liquid as suggested by the nearly uniform photoluminescence through the MoS2 monolayer regardless of crystallographic defects and geometric constraints. The exciton fluid flows over ultralong distances (at least 60 μm) at a speed of ~1.8 × 107 m s−1 (~6% the speed of light). The collective phase emerges above a critical laser power, in the absence of free charges and below a critical temperature (usually Tc ≈ 150 K) approaching room temperature in hexagonal-boron-nitride-encapsulated devices. Our theoretical simulations suggest that momentum is conserved and local equilibrium is achieved among excitons; both these features are compatible with a fluid dynamics description of the exciton transport.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Anomalous exciton transport driven by an electrical backgate in an atomically thin MoS2 semiconductor.
Fig. 2: Long-range transport of excitons.
Fig. 3: Exciton fluid transport and phase diagram.
Fig. 4: Ultrafast exciton fluid flow.
Fig. 5: Nonlinear transport and energy blueshift of fluid excitons.

Data availability

All methods and data generated and/or analysed supporting the findings of this study are included in this paper and its Supplementary Information and are available from the corresponding authors upon reasonable request.

References

  1. Müller, M., Schmalian, J. & Fritz, L. Graphene: a nearly perfect fluid. Phys. Rev. Lett. 103, 025301 (2009).

    Article  Google Scholar 

  2. Bandurin, D. A. et al. Negative local resistance caused by viscous electron backflow in graphene. Science 351, 1055–1058 (2016).

    Article  CAS  Google Scholar 

  3. Crossno, J. et al. Observation of the Dirac fluid and the breakdown of the Wiedemann–Franz law in graphene. Science 351, 1058–1061 (2016).

    Article  CAS  Google Scholar 

  4. Moll, P. J. W., Kushwaha, P., Nandi, N., Schmidt, B. & Mackenzie, A. P. Evidence for hydrodynamic electron flow in PdCuO2. Science 351, 1061–1064 (2016).

    Article  CAS  Google Scholar 

  5. Huang, K. Equation of state of a Bose–Einstein system of particles with attractive interactions. Phys. Rev. 119, 1129–1142 (1960).

    Article  Google Scholar 

  6. Fleming, P. D. Hydrodynamic behavior of triplet excitons. J. Chem. Phys. 59, 3199–3206 (1973).

    Article  CAS  Google Scholar 

  7. Link, B. & Baym, G. Hydrodynamic transport of excitons in semiconductors and Bose–Einstein condensation. Phys. Rev. Lett. 69, 2959–2962 (1992).

    Article  CAS  Google Scholar 

  8. Laikhtman, B. & Rapaport, R. Exciton correlations in coupled quantum wells and their luminescence blue shift. Phys. Rev. B 80, 195313 (2009).

    Article  Google Scholar 

  9. Versteegh, M. A. M., van Lange, A. J., Stoof, H. T. C. & Dijkhuis, J. I. Observation of preformed electron–hole Cooper pairs in highly excited ZnO. Phys. Rev. B 85, 195206 (2012).

    Article  Google Scholar 

  10. Stern, M., Umansky, V. & Bar-Joseph, I. Exciton liquid in coupled quantum wells. Science 343, 55–57 (2014).

    Article  CAS  Google Scholar 

  11. Glazov, M. M. & Suris, R. A. Collective states of excitons in semiconductors. Phys.-Uspekhi 63, 1051–1071 (2020).

    Article  CAS  Google Scholar 

  12. Honold, A., Schultheis, L., Kuhl, J. & Tu, C. W. Collision broadening of two-dimensional excitons in a gaas single quantum well. Phys. Rev. B 40, 6442–6445 (1989).

    Article  CAS  Google Scholar 

  13. Ramon, G., Mann, A. & Cohen, E. Theory of neutral and charged exciton scattering with electrons in semiconductor quantum wells. Phys. Rev. B 67, 045323 (2003).

    Article  Google Scholar 

  14. Anankine, R. et al. Temporal coherence of spatially indirect excitons across Bose–Einstein condensation: the role of free carriers. N. J. Phys. 20, 073049 (2018).

    Article  Google Scholar 

  15. Keldysh, L. V. The electron–hole liquid in semiconductors. Contemp. Phys. 27, 395–428 (1986).

    Article  CAS  Google Scholar 

  16. Korn, T., Heydrich, S., Hirmer, M., Schmutzler, J. & Schüller, C. Low-temperature photocarrier dynamics in monolayer MoS2. Appl. Phys. Lett. 99, 102109 (2011).

    Article  Google Scholar 

  17. Robert, C. et al. Exciton radiative lifetime in transition metal dichalcogenide monolayers. Phys. Rev. B 93, 205423 (2016).

    Article  Google Scholar 

  18. Liu, S. et al. Room-temperature valley polarization in atomically thin semiconductors via chalcogenide alloying. ACS Nano 14, 9873–9883 (2020).

    Article  CAS  Google Scholar 

  19. Steinhoff, A. et al. Exciton fission in monolayer transition metal dichalcogenide semiconductors. Nat. Commun. 8, 1166 (2017).

    Article  CAS  Google Scholar 

  20. Selig, M. et al. Dark and bright exciton formation, thermalization, and photoluminescence in monolayer transition metal dichalcogenides. 2D Mater. 5, 035017 (2018).

    Article  Google Scholar 

  21. Efimkin, D. K., Laird, E. K., Levinsen, J., Parish, M. M. & MacDonald, A. H. Electron–exciton interactions in the exciton–polaron problem. Phys. Rev. B 103, 075417 (2021).

    Article  CAS  Google Scholar 

  22. Kumar, N. et al. Exciton diffusion in monolayer and bulk MoSe2. Nanoscale 6, 4915–4919 (2014).

    Article  CAS  Google Scholar 

  23. Kato, T. & Kaneko, T. Transport dynamics of neutral excitons and trions in monolayer WS2. ACS Nano 10, 9687–9694 (2016).

    Article  CAS  Google Scholar 

  24. Onga, M., Zhang, Y., Ideue, T. & Iwasa, Y. Exciton Hall effect in monolayer MoSs2. Nat. Mat. 16, 1193–1197 (2017).

    Article  CAS  Google Scholar 

  25. Zipfel, J. et al. Exciton diffusion in monolayer semiconductors with suppressed disorder. Phys. Rev. B 101, 115430 (2020).

    Article  CAS  Google Scholar 

  26. Glazov, M. M. Quantum interference effect on exciton transport in monolayer semiconductors. Phys. Rev. Lett. 124, 166802 (2020).

    Article  CAS  Google Scholar 

  27. Hotta, T. et al. Exciton diffusion in hBN-encapsulated monolayer MoSe2. Phys. Rev. B 102, 115424 (2020).

    Article  CAS  Google Scholar 

  28. Uddin, S. Z. et al. Neutral exciton diffusion in monolayer MoS2. ACS Nano 14, 13433–13440 (2020).

    Article  CAS  Google Scholar 

  29. High, A. A. et al. Spontaneous coherence in a cold exciton gas. Nature 483, 584–588 (2012).

    Article  CAS  Google Scholar 

  30. Anankine, R. et al. Quantized vortices and four-component superfluidity of semiconductor excitons. Phys. Rev. Lett. 118, 127402 (2017).

    Article  Google Scholar 

  31. Shahnazaryan, V., Iorsh, I., Shelykh, I. A. & Kyriienko, O. Exciton–exciton interaction in transition-metal dichalcogenide monolayers. Phys. Rev. B 96, 115409 (2017).

    Article  Google Scholar 

  32. Amani, M. et al. Near-unity photoluminescence quantum yield in MoSs2. Science 350, 1065–1068 (2015).

    Article  CAS  Google Scholar 

  33. Lien, D.-H. et al. Electrical suppression of all nonradiative recombination pathways in monolayer semiconductors. Science 364, 468–471 (2019).

    Article  CAS  Google Scholar 

  34. Ballarini, D. et al. Macroscopic two-dimensional polariton condensates. Phys. Rev. Lett. 118, 215301 (2017).

    Article  Google Scholar 

  35. Deng, H., Haug, H. & Yamamoto, Y. Exciton–polariton Bose–Einstein condensation. Rev. Mod. Phys. 82, 1489–1537 (2010).

    Article  CAS  Google Scholar 

  36. Michalsky, T., Wille, M., Grundmann, M. & Schmidt-Grund, R. Spatio-temporal evolution of coherent polariton modes in ZnO microwire cavities at room temperature. Nano Lett. 18, 6820–6825 (2018).

    Article  CAS  Google Scholar 

  37. Elias, D. C. et al. Dirac cones reshaped by interaction effects in suspended graphene. Nat. Phys. 7, 701–704 (2011).

    Article  CAS  Google Scholar 

  38. Sung, J. et al. Long-range ballistic propagation of carriers in methylammonium lead iodide perovskite thin films. Nat. Phys. 16, 171–176 (2020).

    Article  CAS  Google Scholar 

  39. Kalt, H. et al. Quasi-ballistic transport of excitons in quantum wells. J. Lumin. 112, 136–141 (2005).

    Article  CAS  Google Scholar 

  40. Butov, L. V., Gossard, A. C. & Chemla, D. S. Macroscopically ordered state in an exciton system. Nature 418, 751–754 (2002).

    Article  CAS  Google Scholar 

  41. Snoke, D., Denev, S., Liu, Y., Pfeiffer, L. & West, K. Long-range transport in excitonic dark states in coupled quantum wells. Nature 418, 754 (2002).

    Article  CAS  Google Scholar 

  42. Dang, S. et al. Observation of algebraic time order for two-dimensional dipolar excitons. Phys. Rev. Res. 2, 032013 (2020).

    Article  CAS  Google Scholar 

  43. Trauernicht, D. P., Wolfe, J. P. & Mysyrowicz, A. Highly mobile paraexcitons in cuprous oxide. Phys. Rev. Lett. 52, 855–858 (1984).

    Article  CAS  Google Scholar 

  44. Haas, F. & Mahmood, S. Linear and nonlinear ion-acoustic waves in nonrelativistic quantum plasmas with arbitrary degeneracy. Phys. Rev. E 92, 053112 (2015).

    Article  Google Scholar 

  45. Svintsov, D., Vyurkov, V., Yurchenko, S., Otsuji, T. & Ryzhii, V. Hydrodynamic model for electron–hole plasma in graphene. J. Appl. Phys. 111, 083715 (2012).

    Article  Google Scholar 

  46. Erkensten, D., Brem, S. & Malic, E. Exciton-exciton interaction in transition metal dichalcogenide monolayers and van der Waals heterostructures. Phys. Rev. B 103, 045426 (2021).

    Article  CAS  Google Scholar 

  47. Dery, H. & Song, Y. Polarization analysis of excitons in monolayer and bilayer transition-metal dichalcogenides. Phys. Rev. B 92, 125431 (2015).

    Article  Google Scholar 

  48. Do, T. T. H. et al. Bright exciton fine-structure in two-dimensional lead halide perovskites. Nano Lett. 20, 5141–5148 (2020).

    Article  CAS  Google Scholar 

  49. Qiu, D. Y., Cao, T. & Louie, S. G. Nonanalyticity, valley quantum phases, and lightlike exciton dispersion in monolayer transition metal dichalcogenides: theory and first-principles calculations. Phys. Rev. Lett. 115, 176801 (2015).

    Article  Google Scholar 

  50. Kadantsev, E. S. & Hawrylak, P. Electronic structure of a single MoS2 monolayer. Solid State Commun. 152, 909–913 (2012).

    Article  CAS  Google Scholar 

  51. Chen, W., Huang, C.-J. & Zhu, Q. Searching for unconventional superfluid in exciton condensate of monolayer semiconductors. Preprint at https://doi.org/10.48550/arXiv.2302.05585

  52. Guo, H., Zhang, X. & Lu, G. Tuning moiré; excitons in Janus heterobilayers for high-temperature Bose–Einstein condensation. Sci. Adv. 8, eabp9757 (2022).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Q.X. gratefully acknowledges funding support from National Natural Science Foundation of China (12250710126), strong support from the State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University Initiative Scientific Research Program and a start-up grant from Tsinghua University. M.B. gratefully acknowledges support from the Nanyang Technological University for an NAP-SUG grant. This research is supported by the Ministry of Education, Singapore, under its Research Centre of Excellence award to the Institute for Functional Intelligent Materials (I-FIM, project number EDUNC-33-18-279-V12). M.K. acknowledges that this material is based upon work supported by the Air Force Office of Scientific Research and the Office of Naval Research under award number FA8655-21-1-7021. This research is supported by the Ministry of Education, Singapore, under its Academic Research Fund Tier 2 (MOE-T2EP50122-0012) and Tier 3 (MOE2018-T3-1-005). X.L. gratefully acknowledges support from the National Natural Science Foundation of China (12104006), and the Center of Strong Laser and High Magnetic Field at Anhui University. K.W. and T.T. acknowledge support from the EMEXT Element Strategy Initiative to Form Core Research Center through grant number JPMXP0112101001 and the CREST(JPMJCR15F3), JST. A.G.d.Á gratefully acknowledges financial support from the Singapore Ministry of Education via AcRF Tier 3 Programme Geometrical Quantum Materials (MOE2018-T3-1-002) and from the Presidential Postdoctoral Fellowship programme of the Nanyang Technological University. We thank T. C. H. Liew, A. Álvarez Fernández, I. Bar-Joseph and F. Dubin for fruitful discussions and suggestions on this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

A.G.d.Á. and Q.X. started the project. A.G.d.Á. conceived and designed the experiments. Y.R.W. and X.L. designed and fabricated the large-area devices. K.V. fabricated the hBN-encapsulated MoS2 heterostructures. A.G.d.Á., Y.R.W., X.L. and A.F. performed the experiments. M.B., I.W. and S.D.F. performed the theoretical transport simulations. M.B. and I.W. performed the mean-field calculations. Q.X., M.B., M.K., K.S.N., Y.R.W. and T.T.H.D. intensively discussed the results and the manuscript during its preparation. A.G.d.Á. analysed and interpreted the data and wrote the manuscript with the help of all coauthors.

Corresponding authors

Correspondence to Andrés Granados del Águila or Qihua Xiong.

Ethics declarations

Competing interests

The authors declare no competing interests

Peer review

Peer review information

Nature Nanotechnology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Materials and methods, supplementary text, notes and discussions, and Figs. 1–41.

Supporting Video

Video recording the acquisition of PL images under a continuous gate sweep, from +20 V to −60 V, at fixed excitation power and temperature.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

del Águila, A.G., Wong, Y.R., Wadgaonkar, I. et al. Ultrafast exciton fluid flow in an atomically thin MoS2 semiconductor. Nat. Nanotechnol. 18, 1012–1019 (2023). https://doi.org/10.1038/s41565-023-01438-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-023-01438-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing