ABSTRACT

With the advent of graphene, the most studied of all two-dimensional materials, many inorganic analogues have been synthesized and are being exploited for novel applications. Several approaches have been used to obtain large-grain, high-quality materials. Naturally occurring ores, for example, are the best precursors for obtaining highly ordered and large-grain atomic layers by exfoliation. Here, we demonstrate a new two-dimensional material ‘hematene’ obtained from natural iron ore hematite (α-Fe2O3), which is isolated by means of liquid exfoliation. The two-dimensional morphology of hematene is confirmed by transmission electron microscopy. Magnetic measurements together with density functional theory calculations confirm the ferromagnetic order in hematene while its parent form exhibits antiferromagnetic order. When loaded on titania nanotube arrays, hematene exhibits enhanced visible light photocatalytic activity. Our study indicates that photogenerated electrons can be transferred from hematene to titania despite a band alignment unfavourable for charge transfer.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from $8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Butler, S. Z. et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 7, 2898–2926 (2013).

  2. 2.

    Ajayan, P. M., Kim, P. & Banerjee, K. Two-dimensional van der Waals materials. Phys. Today 69, 38–44 (2016).

  3. 3.

    Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).

  4. 4.

    Service, R. F. Beyond graphene. Science 348, 490–492 (2015).

  5. 5.

    Mas-Balleste, R., Gomez-Navarro, C., Gomez-Herrero, J. & Zamora, F. 2D materials: to graphene and beyond. Nanoscale 3, 20–30 (2011).

  6. 6.

    Xu, M. S., Liang, T., Shi, M. M. & Chen, H. Z. Graphene-like two-dimensional materials. Chem. Rev. 113, 3766–3798 (2013).

  7. 7.

    Kan, E. et al. Two-dimensional hexagonal transition-metal oxide for spintronics. J. Phys. Chem. Lett. 4, 1120–1125 (2013).

  8. 8.

    Marelli, M. et al. Hierarchical hematite nanoplatelets for photoelectrochemical water splitting. ACS Appl. Mater. Interfaces 6, 11997–12004 (2014).

  9. 9.

    Mishra, M. & Chun, D.-M. α-Fe2O3 as a photocatalytic material: a review. Appl. Catal. A 498, 126–141 (2015).

  10. 10.

    Chen, J., Xu, L., Li, W. & Gou, X. α-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications. Adv. Mater. 17, 582–586 (2005).

  11. 11.

    Zeng, H., Li, J., Liu, J. P., Wang, Z. L. & Sun, S. Exchange-coupled nanocomposite magnets by nanoparticle self-assembly. Nature 420, 395–398 (2002).

  12. 12.

    Sivula, K., Le Formal, F. & Grätzel, M. Solar water splitting: progress using hematite (α-Fe2O3) photoelectrodes. ChemSusChem 4, 432–449 (2011).

  13. 13.

    Teja, A. S. & Koh, P.-Y. Synthesis, properties, and applications of magnetic iron oxide nanoparticles. Prog. Cryst. Growth Charact. Mater. 55, 22–45 (2009).

  14. 14.

    Kennedy, J. H. & Frese, K. W. Photooxidation of water at α‐Fe2O3 electrodes. J. Electrochem. Soc. 125, 709–714 (1978).

  15. 15.

    Kennedy, J. H. & Frese, K. W. Flatband potentials and donor densities of polycrystalline α‐Fe2O3 determined from Mott–Schottky plots. J. Electrochem. Soc. 125, 723–726 (1978).

  16. 16.

    Scanlon, D. O. et al. Band alignment of rutile and anatase TiO2. Nat. Mater. 12, 798–801 (2013).

  17. 17.

    deFaria, D. L. A., Silva, S. V. & de Oliveira, M. T. Raman microspectroscopy of some iron oxides and oxyhydroxides. J. Raman Spectrosc. 28, 873–878 (1997).

  18. 18.

    McCarty, K. F. Inelastic light scattering in α-Fe2O3: phonon vs magnon scattering. Solid State Commun. 68, 799–802 (1988).

  19. 19.

    Bersani, D., Lottici, P. P. & Montenero, A. Micro-Raman investigation of iron oxide films and powders produced by sol-gel syntheses. J. Raman Spectrosc. 30, 355–360 (1999).

  20. 20.

    Campbell, I. H. & Fauchet, P. M. The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors. Solid State Commun. 58, 739–741 (1986).

  21. 21.

    Jang, J.-W. et al. Enabling unassisted solar water splitting by iron oxide and silicon. Nat. Commun. 6, 7447 (2015).

  22. 22.

    Shim, S. H. & Duffy, T. S. Raman spectroscopy of Fe2O3 to 62 GPa. Am. Mineral. 87, 318–326 (2002).

  23. 23.

    Chastain, J., King, R. C. & Moulder, J. Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data (Physical Electronics, Eden Prairie, MN, 1995).

  24. 24.

    Lu, X. et al. Oxygen-deficient hematite nanorods as high-performance and novel negative electrodes for flexible asymmetric supercapacitors. Adv. Mater. 26, 3148–3155 (2014).

  25. 25.

    He, Y. P. et al. Size and structure effect on optical transitions of iron oxide nanocrystals. Phys. Rev. B 71, 125411 (2005).

  26. 26.

    Thomas, P., Sreekanth, P. & Abraham, K. E. Nanosecond and ultrafast optical power limiting in luminescent Fe2O3 hexagonal nano morphotype. J. Appl. Phys. 117, 053103 (2015).

  27. 27.

    Wheeler, D. A., Wang, G., Ling, Y., Li, Y. & Zhang, J. Z. Nanostructured hematite: synthesis, characterization, charge carrier dynamics, and photoelectrochemical properties. Energy Environ. Sci. 5, 6682–6702 (2012).

  28. 28.

    Zou, B. et al. Anomalous optical properties and electron-phonon coupling enhancement in Fe2O3 nanoparticles coated with a layer of stearates. J. Phys. Chem. Solids 58, 1315–1320 (1997).

  29. 29.

    Cornell, R. M. & Schwertmann, U. The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses (John Wiley & Sons, Weinheim, 2003).

  30. 30.

    Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511–519 (1984).

  31. 31.

    Hill, A. et al. Neutron diffraction study of mesoporous and bulk hematite, α-Fe2O3. Chem. Mater. 20, 4891–4899 (2008).

  32. 32.

    Robinson, P., Harrison, R. J. & McEnroe, S. A. Lamellar magnetism in the haematite-ilmenite series as an explanation for strong remanent magnetization. Nature 418, 517–520 (2002).

  33. 33.

    Grønvold, F. & Samuelsen, E. J. Heat capacity and thermodynamic properties of α-Fe2O3 in the region 300–1050 K. antiferromagnetic transition. J. Phys. Chem. Solids 36, 249–256 (1975).

  34. 34.

    Morin, F. J. Magnetic susceptibility of α-Fe2O3 and α-Fe2O3 with added titanium. Phys. Rev. 78, 819–820 (1950).

  35. 35.

    Moriya, T. Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120, 91–98 (1960).

  36. 36.

    Zysler, R. D. et al. Size effects in the spin–flop transition of hematite nanoparticles. J. Magn. Magn. Mater. 272–276, 1575–1576 (2004).

  37. 37.

    Schroeer, D. & Nininger, R. C. Morin transition in α-Fe2O3 microcrystals. Phys. Rev. Lett. 19, 632–634 (1967).

  38. 38.

    Sorescu, M., Brand, R. A., Mihaila-Tarabasanu, D. & Diamandescu, L. The crucial role of particle morphology in the magnetic properties of haematite. J. Appl. Phys. 85, 5546–5548 (1999).

  39. 39.

    Jiao, F. et al. Ordered mesoporous Fe2O3 with crystalline walls. J. Am. Chem. Soc. 128, 5468–5474 (2006).

  40. 40.

    Liu, L., Kou, H.-Z., Mo, W., Liu, H. & Wang, Y. Surfactant-assisted synthesis of α-Fe2O3 nanotubes and nanorods with shape-dependent magnetic properties. J. Phys. Chem. B 110, 15218–15223 (2006).

  41. 41.

    Rollmann, G., Rohrbach, A., Entel, P. & Hafner, J. First-principles calculation of the structure and magnetic phases of hematite. Phys. Rev. B 69, 165107 (2004).

  42. 42.

    Kontos, A. I. et al. Self-organized anodic TiO2 nanotube arrays functionalized by iron oxide nanoparticles. Chem. Mater. 21, 662–672 (2009).

  43. 43.

    Pelaez, M. et al. A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl. Catal. B 125, 331–349 (2012).

  44. 44.

    Rao, B. M., Torabi, A. & Varghese, O. K. Anodically grown functional oxide nanotubes and applications. MRS Commun. 6, 375–396 (2016).

  45. 45.

    Paulose, M. et al. Anodic growth of highly ordered TiO2 nanotube arrays to 134 µm in length. J. Phys. Chem. 110, 16179–16184 (2006).

  46. 46.

    Ohsaka, T., Izumi, F. & Fujiki, Y. Raman spectrum of anatase, TiO2. J. Raman Spectrosc. 7, 321–324 (1978).

  47. 47.

    LaTempa, T. J., Feng, X., Paulose, M. & Grimes, C. A. Temperature-dependent growth of self-assembled hematite (α-Fe2O3) nanotube arrays: rapid electrochemical synthesis and photoelectrochemical properties. J. Phys. Chem. C. 113, 16293–16298 (2009).

  48. 48.

    Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).

  49. 49.

    van Duin, A. C. T., Dasgupta, S., Lorant, F. & Goddard, W. A. ReaxFF: a reactive force field for hydrocarbons. J. Phys. Chem. A 105, 9396–9409 (2001).

  50. 50.

    Aryanpour, M., van Duin, A. C. T. & Kubicki, J. D. Development of a reactive force field for iron−oxyhydroxide systems. J. Phys. Chem. A 114, 6298–6307 (2010).

  51. 51.

    Hoover, W. G. Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695–1697 (1985).

  52. 52.

    Clark, S. J. et al. First principles methods using CASTEP. Z. Krist. Cryst. Mater. 220, 567–570 (2005).

  53. 53.

    Perdew, J. P. et al. Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46, 6671–6687 (1992).

  54. 54.

    Pozun, Z. D. & Henkelman, G. Hybrid density functional theory band structure engineering in hematite. J. Chem. Phys. 134, 224706 (2011).

Download references

Acknowledgements

A.P.B. acknowledges University Grants Commission, Government of India for Basic Scientific Research (BSR) Fellowship (Grant No. No.F.25-1/2013-14 (BSR)/5-22/2007(BSR) dated 30/05/2014). A.P.B., S.R., C.S.T, A.A., V.K. and P.M.A. acknowledge the US Army Research Office MURI grant W911NF-11-1-0362 for financial assistance. A.P.B., P.M.A. and R.V. acknowledge support from the Airforce Office of Scientific Research (AFOSR) through Grant No. FA9550-14-1-0268. C.F.W. thanks the São Paulo Research Foundation (FAPESP) Grant No. 2016/12340-9 for financial support. Computational and financial support from the Center for Computational Engineering and Sciences at Unicamp through the FAPESP/CEPID Grant No. 2013/08293-7 is acknowledged. L.D and C.-W.C. thank the US Air Force Office of Scientific Research Grant FA9550-15-1-0236, the T. L. L. Temple Foundation, the John J. and Rebecca Moores Endowment, and the State of Texas through the Texas Center for Superconductivity at the University of Houston for financial support. O.K.V. thanks Shell International Exploration and Production Inc. Game Changer and New Energies Research and Technology group for financial support. A.M.R. acknowledges India based neutrino observatory (INO) for the travel grant and University Grants Commission (UGC), India for awarding UGC-BSR Faculty Fellowship.

Author information

Author notes

  1. These authors contributed equally: Aravind Puthirath Balan, Sruthi Radhakrishnan.

Affiliations

  1. Department of Materials Science and NanoEngineering, Rice University, Houston, TX, USA

    • Aravind Puthirath Balan
    • , Sruthi Radhakrishnan
    • , Amey Apte
    • , Vidya Kochat
    • , Robert Vajtai
    • , Chandra Sekhar Tiwary
    • , Anantharaman Malie Madom Ramaswamy Iyer
    •  & Pulickel M. Ajayan
  2. Department of Physics, Cochin University of Science and Technology, Kochi, Kerala, India

    • Aravind Puthirath Balan
    •  & Anantharaman Malie Madom Ramaswamy Iyer
  3. Applied Physics Department and Center for Computational Engineering and Sciences, State University of Campinas – UNICAMP, Campinas, Brazil

    • Cristiano F. Woellner
    •  & Douglas S. Galvao
  4. Stuttgart Center for Electron Microscopy, Max Planck Institute for Solid State Research, Stuttgart, Germany

    • Shyam K. Sinha
    •  & Peter A. van Aken
  5. Texas Center for Superconductivity, University of Houston, Houston, TX, USA

    • Liangzi Deng
    •  & Ching-Wu Chu
  6. Department of Chemistry, Rice University, Houston, TX, USA

    • Carlos de los Reyes
    •  & Angel A. Martí
  7. Department of Physics, University of Houston, Houston, TX, USA

    • Banki Manmadha Rao
    • , Maggie Paulose
    • , Ram Neupane
    •  & Oomman K. Varghese
  8. Honda Research Institute USA Inc., Columbus, OH, USA

    • Avetik R. Harutyunyan
  9. Lawrence Berkeley National Lab, Berkeley, CA, USA

    • Ching-Wu Chu
  10. Department of Earth, Environmental and Planetary Sciences, Rice University, Houston, TX, USA

    • Gelu Costin

Authors

  1. Search for Aravind Puthirath Balan in:

  2. Search for Sruthi Radhakrishnan in:

  3. Search for Cristiano F. Woellner in:

  4. Search for Shyam K. Sinha in:

  5. Search for Liangzi Deng in:

  6. Search for Carlos de los Reyes in:

  7. Search for Banki Manmadha Rao in:

  8. Search for Maggie Paulose in:

  9. Search for Ram Neupane in:

  10. Search for Amey Apte in:

  11. Search for Vidya Kochat in:

  12. Search for Robert Vajtai in:

  13. Search for Avetik R. Harutyunyan in:

  14. Search for Ching-Wu Chu in:

  15. Search for Gelu Costin in:

  16. Search for Douglas S. Galvao in:

  17. Search for Angel A. Martí in:

  18. Search for Peter A. van Aken in:

  19. Search for Oomman K. Varghese in:

  20. Search for Chandra Sekhar Tiwary in:

  21. Search for Anantharaman Malie Madom Ramaswamy Iyer in:

  22. Search for Pulickel M. Ajayan in:

Contributions

A.P.B., S.R., C.S.T., A.A., V.K., A.R.H., A.M.R., R.V. and P.M.A planned and conducted experiments. C.F.W. and D.S.G. performed the theoretical simulations. S.K.S. and P.A.v.A performed the microscopy experiments. L.D. and C.-W.C performed the magnetic measurements. B.M.R., M.P., R.N. and O.K.V. conducted the photocatalytic experiments and analysis. G.C. collected the natural sample and performed the characterizations on the parent crystal. C.d.l.R. and A.A.M. performed the optical measurements. All the authors contributed to the analysis of data and writing the manuscript.

Competing interests

The authors declare no competing interests.

Corresponding authors

Correspondence to Chandra Sekhar Tiwary or Anantharaman Malie Madom Ramaswamy Iyer or Pulickel M. Ajayan.

Supplementary information

  1. Supplementary Information

    Supplementary Figures 1–12, Supplementary Tables 1–3, Supplementary References

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41565-018-0134-y