Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Lyophilized lymph nodes for improved delivery of chimeric antigen receptor T cells

Abstract

Lymph nodes are crucial organs of the adaptive immune system, orchestrating T cell priming, activation and tolerance. T cell activity and function are highly regulated by lymph nodes, which have a unique structure harbouring distinct cells that work together to detect and respond to pathogen-derived antigens. Here we show that implanted patient-derived freeze-dried lymph nodes loaded with chimeric antigen receptor T cells improve delivery to solid tumours and inhibit tumour recurrence after surgery. Chimeric antigen receptor T cells can be effectively loaded into lyophilized lymph nodes, whose unaltered meshwork and cytokine and chemokine contents promote chimeric antigen receptor T cell viability and activation. In mouse models of cell-line-derived human cervical cancer and patient-derived pancreatic cancer, delivery of chimeric antigen receptor T cells targeting mesothelin via the freeze-dried lymph nodes is more effective in preventing tumour recurrence when compared to hydrogels containing T-cell-supporting cytokines. This tissue-mediated cell delivery strategy holds promise for controlled release of various cells and therapeutics with long-term activity and augmented function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic and characterization of L-LNs for delivery of CAR T cells.
Fig. 2: The immunological effect of CAR T@L-LNs.
Fig. 3: CAR T@L-LNs control recurrence of cell-line-derived tumours post surgery.
Fig. 4: L-LNs prolong anti-tumour response and promote tumour infiltration of CAR T cells.
Fig. 5: L-LNs augment anti-tumour effect of CAR T cells in the PDX model.

Similar content being viewed by others

Data availability

All the data supporting the findings of this study are available within the article and its Supplementary Information and from the corresponding authors upon reasonable request. Source data are provided with this paper. The GO analysis was based on the Panther database (https://www.pantherdb.org/).

References

  1. Brentjens, R. J. et al. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci. Transl. Med. 5, 177ra138 (2013).

    Article  Google Scholar 

  2. Maude, S. L. et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N. Engl. J. Med. 371, 1507–1517 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Hou, A. J., Chen, L. C. & Chen, Y. Y. Navigating CAR T cells through the solid-tumour microenvironment. Nat. Rev. Drug Discov. 20, 531–550 (2021).

  4. Milone, M. C. et al. Engineering-enhanced CAR T cells for improved cancer therapy. Nat. Cancer 2, 780–793 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hong, M., Clubb, J. D. & Chen, Y. Y. Engineering CAR T cells for next-generation cancer therapy. Cancer Cell 38, 473–488 (2020).

    Article  CAS  PubMed  Google Scholar 

  6. Rafiq, S., Hackett, C. S. & Brentjens, R. J. Engineering strategies to overcome the current roadblocks in CAR T cell therapy. Nat. Rev. Clin. Oncol. 17, 147–167 (2020).

    Article  PubMed  Google Scholar 

  7. Labanieh, L., Majzner, R. G. & Mackall, C. L. Programming CAR T cells to kill cancer. Nat. Biomed. Eng. 2, 377–391 (2018).

  8. Fu, R. et al. Delivery techniques for enhancing CAR T cell therapy against solid tumors. Adv. Funct. Mater. 31, 2009489 (2021).

    Article  CAS  Google Scholar 

  9. Wang, H. & Mooney, D. J. Biomaterial-assisted targeted modulation of immune cells in cancer treatment. Nat. Mater. 17, 761–772 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Hu, Q. et al. Inhibition of post-surgery tumour recurrence via a hydrogel releasing CAR T cells and anti-PDL1-conjugated platelets. Nat. Biomed. Eng. 5, 1038–1047 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Stephan, S. B. et al. Biopolymer implants enhance the efficacy of adoptive T cell therapy. Nat. Biotechnol. 33, 97–101 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Pérez del Río, E. et al. CCL21-loaded 3D hydrogels for T cell expansion and differentiation. Biomaterials 259, 120313 (2020).

    Article  PubMed  Google Scholar 

  13. Suematsu, S. & Watanabe, T. Generation of a synthetic lymphoid tissue-like organoid in mice. Nat. Biotechnol. 22, 1539–1545 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Cheung, A. S., Zhang, D. K. Y., Koshy, S. T. & Mooney, D. J. Scaffolds that mimic antigen-presenting cells enable ex vivo expansion of primary T cells. Nat. Biotechnol. 36, 160–169 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Coon, M. E., Stephan, S. B., Gupta, V., Kealey, C. P. & Stephan, M. T. Nitinol thin films functionalized with CAR T cells for the treatment of solid tumours. Nat. Biomed. Eng. 4, 195–206 (2020).

    Article  CAS  PubMed  Google Scholar 

  16. Grosskopf, A. K. et al. Delivery of CAR T cells in a transient injectable stimulatory hydrogel niche improves treatment of solid tumors. Sci. Adv. 8, eabn8264 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang, K. et al. GD2-specific CAR T cells encapsulated in an injectable hydrogel control retinoblastoma and preserve vision. Nat. Cancer 1, 990–997 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ma, L. et al. Enhanced CAR T cell activity against solid tumors by vaccine boosting through the chimeric receptor. Science 365, 162–168 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Krishnamurty, A. T. & Turley, S. J. Lymph node stromal cells: cartographers of the immune system. Nat. Immunol. 21, 369–380 (2020).

    Article  CAS  PubMed  Google Scholar 

  20. Bousso, P. T cell activation by dendritic cells in the lymph node: lessons from the movies. Nat. Rev. Immunol. 8, 675–684 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Saxena, V. et al. Role of lymph node stroma and microenvironment in T cell tolerance. Immunol. Rev. 292, 9–23 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cyster, J. G. Chemokines and cell migration in secondary lymphoid organs. Science 286, 2098–2102 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. von Andrian, U. H. & Mempel, T. R. Homing and cellular traffic in lymph nodes. Nat. Rev. Immunol. 3, 867–878 (2003).

    Article  Google Scholar 

  24. Morton, D. L. et al. Final trial report of sentinel-node biopsy versus nodal observation in melanoma. N. Engl. J. Med. 370, 599–609 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Leone, A., Diorio, G. J., Pettaway, C., Master, V. & Spiess, P. E. Contemporary management of patients with penile cancer and lymph node metastasis. Nat. Rev. Urol. 14, 335–347 (2017).

    Article  PubMed  Google Scholar 

  26. Cochran, A. J. et al. Tumour-induced immune modulation of sentinel lymph nodes. Nat. Rev. Immunol. 6, 659–670 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Zhang, C. et al. Mapping the spreading routes of lymphatic metastases in human colorectal cancer. Nat. Commun. 11, 1993 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tasnim, H. et al. Quantitative measurement of naïve T cell association with dendritic cells, FRCs, and blood vessels in lymph nodes. Front. Immunol. 9, 1571 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Liu, W. F. et al. Real-time in vivo detection of biomaterial-induced reactive oxygen species. Biomaterials 32, 1796–1801 (2011).

    Article  PubMed  Google Scholar 

  30. Vella, A. T., Dow, S., Potter, T. A., Kappler, J. & Marrack, P. Cytokine-induced survival of activated T cells in vitro and in vivo. Proc. Natl Acad. Sci. USA 95, 3810–3815 (1998).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hermans, D. et al. Lactate dehydrogenase inhibition synergizes with IL-21 to promote CD8+ T cell stemness and antitumor immunity. Proc. Natl Acad. Sci. USA 117, 6047–6055 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. Castro, F., Cardoso, A. P., Gonçalves, R. M., Serre, K. & Oliveira, M. J. Interferon-gamma at the crossroads of tumor immune surveillance or evasion. Front. Immunol. 9, 847 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Assarsson, E. et al. Homogenous 96-plex PEA immunoassay exhibiting high sensitivity, specificity, and excellent scalability. PLoS ONE 9, e95192 (2014).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  34. Onder, L. et al. IL-7–producing stromal cells are critical for lymph node remodeling. Blood 120, 4675–4683 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mueller, S. N. & Germain, R. N. Stromal cell contributions to the homeostasis and functionality of the immune system. Nat. Rev. Immunol. 9, 618–629 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gattinoni, L., Speiser, D. E., Lichterfeld, M. & Bonini, C. T memory stem cells in health and disease. Nat. Med. 23, 18–27 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mahnke, Y. D., Brodie, T. M., Sallusto, F., Roederer, M. & Lugli, E. The who’s who of T cell differentiation: human memory T cell subsets. Eur. J. Immunol. 43, 2797–2809 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Schluns, K. S., Kieper, W. C., Jameson, S. C. & Lefrançois, L. Interleukin-7 mediates the homeostasis of naïve and memory CD8 T cells in vivo. Nat. Immunol. 1, 426–432 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Geginat, J., Sallusto, F. & Lanzavecchia, A. Cytokine-driven proliferation and differentiation of human naive, central memory, and effector memory CD4+ T cells. J. Exp. Med. 194, 1711–1720 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Grabstein, K. H. et al. Cloning of a T cell growth factor that interacts with the β chain of the interleukin-2 receptor. Science 264, 965–968 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  41. Schluns, K. S. & Lefrançois, L. Cytokine control of memory T cell development and survival. Nat. Rev. Immunol. 3, 269–279 (2003).

  42. Melenhorst, J. J. et al. Decade-long leukaemia remissions with persistence of CD4+ CAR T cells. Nature 602, 503–509 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. Propper, D. J. & Balkwill, F. R. Harnessing cytokines and chemokines for cancer therapy. Nat. Rev. Clin. Oncol. 19, 237–253 (2022).

    Article  CAS  PubMed  Google Scholar 

  44. Briukhovetska, D. et al. Interleukins in cancer: from biology to therapy. Nat. Rev. Cancer 21, 481–499 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kagoya, Y. et al. A novel chimeric antigen receptor containing a JAK–STAT signaling domain mediates superior antitumor effects. Nat. Med. 24, 352–359 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hurton, L. V. et al. Tethered IL-15 augments antitumor activity and promotes a stem-cell memory subset in tumor-specific T cells. Proc. Natl Acad. Sci. USA 113, E7788–E7797 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tang, L. et al. Enhancing T cell therapy through TCR-signaling-responsive nanoparticle drug delivery. Nat. Biotechnol. 36, 707–716 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Liu, Y. et al. Cytokine conjugation to enhance T cell therapy. Proc. Natl Acad. Sci. USA 120, e2213222120 (2023).

    Article  CAS  PubMed  Google Scholar 

  49. Li, A. M. et al. Checkpoint inhibitors augment CD19-directed chimeric antigen receptor (CAR) T cell therapy in relapsed B cell acute lymphoblastic leukemia. Blood 132, 556 (2018).

    Article  Google Scholar 

  50. Zhang, J. et al. Non-viral, specifically targeted CAR T cells achieve high safety and efficacy in B-NHL. Nature 609, 369–374 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  51. Link, A. et al. Fibroblastic reticular cells in lymph nodes regulate the homeostasis of naive T cells. Nat. Immunol. 8, 1255–1265 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Horsnell, H. L. et al. Lymph node homeostasis and adaptation to immune challenge resolved by fibroblast network mechanics. Nat. Immunol. 23, 1169–1182 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Nam, S., Seo, B. R., Najibi, A. J., McNamara, S. L. & Mooney, D. J. Active tissue adhesive activates mechanosensors and prevents muscle atrophy. Nat. Mater. 22, 249–259 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  54. Gong, N. et al. In situ PEGylation of CAR T cells alleviates cytokine release syndrome and neurotoxicity. Nat. Mater. 22, 1571–1580 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the National Key R&D Program of China (2021YFA0909900), the National Natural Science Foundation of China (52173142 and 52233013) and Zhejiang University for the grants from the Startup Package.

Author information

Authors and Affiliations

Authors

Contributions

Z.G., H.L. and P.Z. initiated the project concept. J. Shi, W. Wu, D.C., Z.L., T.S., Y.W., Y.Y., Q.W., F.L., R.Z., C.Z. and X.S. performed the experiments and collected the data. Z.M., Y.D. and W. Wang provided support for the PDX model. G.D., J. Sun, X.L., W.F. and D.C. helped with data analysis. J. Shi, W. Wu, H.L. and Z.G. wrote the paper.

Corresponding authors

Correspondence to Peng Zhao, Hongjun Li or Zhen Gu.

Ethics declarations

Competing interests

Related patents have been applied for by Z.G., H.L., J. Shi and W. Wu (patent applicant: Zhejiang University; name of inventors: Zhen Gu, Hongjun Li, Jiaqi Shi, Wei Wu; application number: 2022113666477; status of application: substantive examination; specific aspect of paper covered in patent application: preparation of CAR T cell-loaded lyophilizing lymph nodes and its anti-tumour application). Z.G. is the cofounder of Zenomics Inc., ZCapsule Inc. and µZen Inc. The other authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Christopher Jewell and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–26 and Table 1.

Reporting Summary

Source data

Source Data Figs. 1–5

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, J., Wu, W., Chen, D. et al. Lyophilized lymph nodes for improved delivery of chimeric antigen receptor T cells. Nat. Mater. (2024). https://doi.org/10.1038/s41563-024-01825-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41563-024-01825-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing