Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Non-volatile electric-field control of inversion symmetry

Abstract

Competition between ground states at phase boundaries can lead to significant changes in properties under stimuli, particularly when these ground states have different crystal symmetries. A key challenge is to stabilize and control the coexistence of symmetry-distinct phases. Using BiFeO3 layers confined between layers of dielectric TbScO3 as a model system, we stabilize the mixed-phase coexistence of centrosymmetric and non-centrosymmetric BiFeO3 phases at room temperature with antipolar, insulating and polar semiconducting behaviour, respectively. Application of orthogonal in-plane electric (polar) fields results in reversible non-volatile interconversion between the two phases, hence removing and introducing centrosymmetry. Counterintuitively, we find that an electric field ‘erases’ polarization, resulting from the anisotropy in octahedral tilts introduced by the interweaving TbScO3 layers. Consequently, this interconversion between centrosymmetric and non-centrosymmetric phases generates changes in the non-linear optical response of over three orders of magnitude, resistivity of over five orders of magnitude and control of microscopic polar order. Our work establishes a platform for cross-functional devices that take advantage of changes in optical, electrical and ferroic responses, and demonstrates octahedral tilts as an important order parameter in materials interface design.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mixed-phase coexistence of polar and antipolar phases in the BFO/TSO superlattice.
Fig. 2: Piezoforce and non-linear optical response of mixed-phase coexistence.
Fig. 3: MIM and DFT band-structure calculations.
Fig. 4: Non-volatile electric-field manipulation of SHG intensity and resistivity.

Similar content being viewed by others

Data availability

Data presented in the main text are open access and can be found on Zenodo65 or as Source data accompanying this manuscript. Owing to the extent of data presented in the Supplementary Information, it is available upon request from the corresponding authors.

References

  1. Robert E Newham. Properties of Materials: Anisotropy, Symmetry, Structure. (Oxford Univ. Press, 2004); https://doi.org/10.1093/oso/9780198520757.001.0001

  2. Rashba, E. & Sheka, V. Symmetry of energy bands in crystals of wurtzite type II. Symmetry of bands with spin-orbit interaction included. Fiz. Tverd. Tela Collect. Pap. 2, 62–76 (1959).

    Google Scholar 

  3. Lines, M. E. & Glass, A. M. Principles and Applications of Ferroelectrics and Related Materials (Oxford Univ. Press, 1977); https://doi.org/10.1093/acprof:oso/9780198507789.001.0001

  4. Dzyaloshinsky, I. A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids 4, 241–255 (1958). & I.

    Article  CAS  Google Scholar 

  5. Moriya, T. Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120, 91–98 (1960).

    Article  CAS  Google Scholar 

  6. Goodenough, J. B. The two components of the crystallographic transition in VO2. J. Solid State Chem. 3, 490–500 (1971).

    Article  CAS  Google Scholar 

  7. Li, X. et al. Terahertz field–induced ferroelectricity in quantum paraelectric SrTiO3. Science 364, 1079–1082 (2019).

    Article  CAS  Google Scholar 

  8. Nova, T. F., Disa, A. S., Fechner, M. & Cavalleri, A. Metastable ferroelectricity in optically strained SrTiO3. Science 364, 1075–1079 (2019).

    Article  CAS  Google Scholar 

  9. Das, S. et al. Observation of room-temperature polar skyrmions. Nature 568, 368–372 (2019).

    Article  CAS  Google Scholar 

  10. Yadav, A. K. et al. Observation of polar vortices in oxide superlattices. Nature 530, 198–201 (2016).

    Article  CAS  Google Scholar 

  11. Jia, C. L., Urban, K. W., Alexe, M., Hesse, D. & Vrejoiu, I. Direct observation of continuous electric dipole rotation in flux-closure domains in ferroelectric Pb(Zr, Ti)O3. Science 331, 1420–1423 (2011).

    Article  CAS  Google Scholar 

  12. Mundy, J. A. et al. Atomically engineered ferroic layers yield a room-temperature magnetoelectric multiferroic. Nature 537, 523–527 (2016).

    Article  CAS  Google Scholar 

  13. Bousquet, E. et al. Improper ferroelectricity in perovskite oxide artificial superlattices. Nature 452, 732–736 (2008).

    Article  CAS  Google Scholar 

  14. Zhao, H. J., Íñiguez, J., Ren, W., Chen, X. M. & Bellaiche, L. Atomistic theory of hybrid improper ferroelectricity in perovskites. Phys. Rev. B 89, 174101 (2014).

    Article  Google Scholar 

  15. Diéguez, O., Aguado-Puente, P., Junquera, J. & Íñiguez, J. Domain walls in a perovskite oxide with two primary structural order parameters: first-principles study of BiFeO3. Phys. Rev. B 87, 024102 (2013).

    Article  Google Scholar 

  16. Mundy, J. A. et al. Liberating a hidden antiferroelectric phase with interfacial electrostatic engineering. Sci. Adv. 8, eabg5860 (2022).

    Article  CAS  Google Scholar 

  17. Cherifi, R. O. et al. Electric-field control of magnetic order above room temperature. Nat. Mater. 13, 345–351 (2014).

    Article  CAS  Google Scholar 

  18. Seyler, K. L. et al. Electrical control of second-harmonic generation in a WSe2 monolayer transistor. Nat. Nanotechnol. 10, 407–411 (2015).

    Article  CAS  Google Scholar 

  19. Pouget, J. P., Launois, H., D’Haenens, J. P., Merenda, P. & Rice, T. M. Electron localization induced by uniaxial stress in pure VO2. Phys. Rev. Lett. 35, 873–875 (1975).

    Article  CAS  Google Scholar 

  20. Xu, R. et al. Strain-induced room-temperature ferroelectricity in SrTiO3 membranes. Nat. Commun. 11, 3141 (2020).

    Article  CAS  Google Scholar 

  21. Grosso, B. F. & Spaldin, N. A. Prediction of low-energy phases of BiFeO3 with large unit cells and complex tilts beyond Glazer notation. Phys. Rev. Mater. 5, 054403 (2021).

    Article  CAS  Google Scholar 

  22. Dong, W. et al. Emergent antipolar phase in BiFeO3-La0.7Sr0.3MnO3superlattice. Nano Lett. 20, 6045 (2020).

    Article  CAS  Google Scholar 

  23. Carcan, B. et al. Phase diagram of BiFeO3/LaFeO3 superlattices: antiferroelectric-like state stability arising from strain effects and symmetry mismatch at heterointerfaces. Adv. Mater. Interfaces 4, 1601036 (2017).

    Article  Google Scholar 

  24. Prosandeev, S., Wang, D., Ren, W., Íñiguez, J. & Bellaiche, L. Novel nanoscale twinned phases in perovskite oxides. Adv. Funct. Mater. 23, 234–240 (2013).

    Article  CAS  Google Scholar 

  25. Diéguez, O., González-Vázquez, O. E., Wojdeł, J. C. & Íñiguez, J. First-principles predictions of low-energy phases of multiferroic BiFeO3. Phys. Rev. B83, 094105 (2011).

    Article  Google Scholar 

  26. Tate, M. W. et al. High dynamic range pixel array detector for scanning transmission electron microscopy. Microsc. Microanal. 22, 237–249 (2016).

    Article  CAS  Google Scholar 

  27. Zuo, J.-M. & Shao, Y.-T. Scanning convergent beam electron diffraction (CBED), the essential questions of why, what and how? Microsc. Microanal. 24, 172–173 (2018).

    Article  Google Scholar 

  28. Shao, Y.-T. & Zuo, J.-M. Lattice-rotation vortex at the charged monoclinic domain boundary in a relaxor ferroelectric crystal. Phys. Rev. Lett. 118, 157601 (2017).

    Article  Google Scholar 

  29. Tsuda, K., Yasuhara, A. & Tanaka, M. Two-dimensional mapping of polarizations of rhombohedral nanostructures in the tetragonal phase of BaTiO3 by the combined use of the scanning transmission electron microscopy and convergent-beam electron diffraction methods. Appl. Phys. Lett. 103, 082908 (2013).

    Article  Google Scholar 

  30. Porter, D. & Easterling, K. E. Phase Transformations in Metals and Alloys (Chapman & Hall, 1992).

  31. Uehara, M., Mori, S., Chen, C. H. & Cheong, S. W. Percolative phase separation underlies colossal magnetoresistance in mixed-valent manganites. Nature 399, 560–563 (1999).

    Article  CAS  Google Scholar 

  32. Ahart, M. et al. Origin of morphotropic phase boundaries in ferroelectrics. Nature 451, 545–548 (2008).

    Article  CAS  Google Scholar 

  33. Yin, Z.-W., Luo, H.-S., Wang, P.-C. & Xu, G.-S. Growth, characterization and properties of relaxor ferroelectric PMN-PT single crystals. Ferroelectrics 229, 207–216 (1999).

    Article  CAS  Google Scholar 

  34. Damodaran, A. R. et al. Phase coexistence and electric-field control of toroidal order in oxide superlattices. Nat. Mater. 16, 1003–1009 (2017).

    Article  CAS  Google Scholar 

  35. De Luca, G. et al. Domain wall architecture in tetragonal ferroelectric thin films. Adv. Mater. 29, 1605145 (2017).

    Article  Google Scholar 

  36. Chu, Z., Zheng, L. & Lai, K. Microwave microscopy and its applications. Annu. Rev. Mater. Res. 50, 105–130 (2020).

    Article  CAS  Google Scholar 

  37. Yang, Y. et al. Batch-fabricated cantilever probes with electrical shielding for nanoscale dielectric and conductivity imaging. J. Micromech. Microeng. 22, 115040 (2012).

    Article  Google Scholar 

  38. Lai, K., Kundhikanjana, W., Kelly, M. & Shen, Z. X. Modeling and characterization of a cantilever-based near-field scanning microwave impedance microscope. Rev. Sci. Instrum. 79, 063703 (2008).

    Article  CAS  Google Scholar 

  39. Lu, J. et al. Magnetic susceptibility, phonons and dielectric constant of single crystalline BiFeO3. J. Phys. Conf. Ser. 200, 012106 (2010).

    Article  Google Scholar 

  40. Seidel, J. et al. Conduction at domain walls in oxide multiferroics. Nat. Mater. 8, 229–234 (2009).

    Article  CAS  Google Scholar 

  41. Meier, D. et al. Anisotropic conductance at improper ferroelectric domain walls. Nat. Mater. 11, 284–288 (2012).

    Article  CAS  Google Scholar 

  42. Edwards, D. et al. Giant resistive switching in mixed phase BiFeO3 via phase population control. Nanoscale 10, 17629–17637 (2018).

    Article  CAS  Google Scholar 

  43. Dawber, M. et al. Unusual behavior of the ferroelectric polarization in PbTiO3/SrTiO3 superlattices. Phys. Rev. Lett. 95, 177601 (2005).

    Article  CAS  Google Scholar 

  44. Shirane, G., Sawaguchi, E. & Takagi, Y. Dielectric properties of lead zirconate. Phys. Rev. 84, 476 (1951).

    Article  CAS  Google Scholar 

  45. Cross, L. E. Antiferroelectric-ferroelectric switching in a simple “kittel” antiferroelectric. J. Phys. Soc. Japan 23, 77–82 (1967).

    Article  CAS  Google Scholar 

  46. Fthenakis, Z. G. & Ponomareva, I. Intrinsic dynamics of the electric-field-induced phase switching in antiferroelectric PbZrO3 ultrathin films. Phys. Rev. B 98, 054107 (2018).

    Article  CAS  Google Scholar 

  47. Terhune, R. W., Maker, P. D. & Savage, C. M. Optical harmonic generation in calcite. Phys. Rev. Lett. 8, 404–406 (1962).

    Article  CAS  Google Scholar 

  48. Cai, W., Vasudev, A. P. & Brongersma, M. L. Electrically controlled nonlinear generation of light with plasmonics. Science 333, 1720–1723 (2011).

    Article  CAS  Google Scholar 

  49. Kang, L. et al. Electrifying photonic metamaterials for tunable nonlinear optics. Nat. Commun. 5, 5680 (2014).

    Article  Google Scholar 

  50. Ruzicka, B. A. et al. Second-harmonic generation induced by electric currents in GaAs. Phys. Rev. Lett. 108, 077403 (2012).

    Article  Google Scholar 

  51. Sirtori, C., Capasso, F., Sivco, D. L., Hutchinson, A. L. & Cho, A. Y. Resonant Stark tuning of second‐order susceptibility in coupled quantum wells. Appl. Phys. Lett. 60, 151–153 (1998).

    Article  Google Scholar 

  52. Nordlander, J., Rossell, M. D., Campanini, M., Fiebig, M. & Trassin, M. Inversion-symmetry engineering in layered oxide thin films. Nano Lett. 21, 2780–2785 (2021).

    Article  CAS  Google Scholar 

  53. Canfield, B. K. et al. A macroscopic formalism to describe the second-order nonlinear optical response of nanostructures. J. Opt. A 8, S278 (2006).

    Article  Google Scholar 

  54. Boyn, S. et al. Learning through ferroelectric domain dynamics in solid-state synapses. Nat. Commun. 8, 14736 (2017).

    Article  CAS  Google Scholar 

  55. Zuo, J. M. & Spence, J. C. H. Advanced Transmission Electron Microscopy: Imaging and Diffraction in Nanoscience (Springer, 2016); https://doi.org/10.1007/978-1-4939-6607-3

  56. Ophus, C. Four-dimensional scanning transmission electron microscopy (4D-STEM): from scanning nanodiffraction to ptychography and beyond. Microsc. Microanal. 25, 563–582 (2019).

    Article  CAS  Google Scholar 

  57. Müller-Caspary, K. et al. Electrical polarization in AlN/GaN nanodisks measured by momentum-resolved 4D scanning transmission electron microscopy. Phys. Rev. Lett. 122, 106102 (2019).

    Article  Google Scholar 

  58. Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133 (1965).

    Article  Google Scholar 

  59. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).

    Article  Google Scholar 

  60. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    Article  CAS  Google Scholar 

  61. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  Google Scholar 

  62. Neaton, J. B., Ederer, C., Waghmare, U. V., Spaldin, N. A. & Rabe, K. M. First-principles study of spontaneous polarization in multiferroic BiFeO3. Phys. Rev. B 71, 014113 (2005).

    Article  Google Scholar 

  63. Shenton, J. K., Bowler, D. R. & Cheah, W. L. Effects of the Hubbard U on density functional-based predictions of BiFeO3 properties. J. Phys. Condens. Matter 29, 445501 (2017).

    Article  Google Scholar 

  64. Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. J. & Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys. Rev. B 57, 1505–1509 (1998).

    Article  CAS  Google Scholar 

  65. Caretta, L. et al. Nonvolatile electric field control of inversion symmetry: manuscript data. Zenodo https://doi.org/10.5281/zenodo.7130638 (2022).

Download references

Acknowledgements

R.R., L.W.M., D.A.M., L.-Q.C. and D.G.S. acknowledge support from the Army Research Office under the ETHOS MURI via cooperative agreement W911NF-21-2-0162. The MIM work (J.Y., D.L. and K.L.) was supported by the Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under contract no. DE-SC0019025. Computational resources were provided by ETH Zürich and the Swiss National Supercomputing Center (CSCS), project ID no. s889. Work at ETH was supported by ETH Zürich and the Körber Foundation. M.F. acknowledges support by the Swiss National Science Foundation project 200021_178825. Z.H. and X.G. were supported by the National Natural Science Foundation of China grant no. 92166104. Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under contract no. DE-AC02-05CH11231. L.C. acknowledges financial support from the Ford Foundation and the University of California President’s Postdoctoral Fellowship Program. Y.-T.S. and D.A.M. acknowledge financial support from the Department of Defense, Air Force Office of Scientific Research under award FA9550-18-1-0480. The electron microscopy studies were performed at the Cornell Center for Materials Research, a National Science Foundation (NSF) Materials Research Science and Engineering Centers program (DMR-1719875, NSF-MRI-1429155). The microscopy work at Cornell was supported by the NSF PARADIM (DMR-2039380), with additional support from Cornell University, the Weill Institute and the Kavli Institute at Cornell. The authors acknowledge discussions regarding diffraction imaging with J.-M. Zuo as well as M. Thomas, J. G. Grazul, M. Silvestry Ramos and K. Spoth for technical support and careful maintenance of the instruments. We thank X. Huang, A. Fernandez and P. Meisenheimer for fruitful conversations and M. E. Holtz for preliminary electron microscopy studies. We also acknowledge I. Schulze-Jonack and M. S. Stypa for help with substrate crystal growth.

Author information

Authors and Affiliations

Authors

Contributions

R.R., D.G.S., L.C. and A.B.M. conceived the project and planned the experiments. Y.-T.S. and H.K.P. performed TEM, TEM sample preparation and atomically resolved polar and structural analysis under supervision of D.A.M. A.B.M. optimized synthesis of the superlattices and performed reciprocal space maps under supervision of D.G.S. L.C. and P.B. performed in-situ SHG measurements with help from A.R. and E.B, and M.F. L.C., P.B. and E.B. prepared the experimental SHG setup. P.B. performed PFM imaging under supervision from L.C. L.C. and P.B. performed electronic transport measurements. J.Y. and D.L. performed MIM and analysis with supervision from K.L. M.M. performed laboratory-based X-ray structural characterization and analysis. L.C. and E.P designed and microfabricated the electric-field devices. L.C. deposited metal layers. First-principles calculations were performed by B.F.G. under the supervision of N.A.S. Phase field calculations were performed by C.D. and F.X. under the supervision of L.-Q.C. and X.G. under the supervision of Z.H. SHG analysis was completed by L.C., P.B. and M.F. Scandate crystal substrates were grown by S.G. L.C., Y.-T.S., R.R., K.L. and L.W.M. wrote the manuscript.

Corresponding authors

Correspondence to Lucas Caretta or Ramamoorthy Ramesh.

Ethics declarations

Competing interests

K.L. holds a patent on the MIM technology, which is licensed to PrimeNano, Inc., for commercial instruments. The terms of this arrangement have been reviewed and approved by the University of Texas at Austin in accordance with its policy on objectivity in research. The remaining authors declare no conflict of interest.

Peer review

Peer review information

Nature Materials thanks Charles Paillard, Paolo Radaelli and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–26, Table 1, Text 1–9 and refs. 1–10.

Source data

Source Data For Fig. 2

Source data for SHG data plotted in Fig. 2c–e.

Source Data For Fig. 4

Source data for DFT data plotted in Fig. 4e, SHG data plotted in Fig. 4i, resistivity data plotted in Fig. 4j and PFM data plotted in Fig. 4k.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caretta, L., Shao, YT., Yu, J. et al. Non-volatile electric-field control of inversion symmetry. Nat. Mater. 22, 207–215 (2023). https://doi.org/10.1038/s41563-022-01412-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-022-01412-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing