Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Room-temperature logic-in-memory operations in single-metallofullerene devices

Abstract

In-memory computing provides an opportunity to meet the growing demands of large data-driven applications such as machine learning, by colocating logic operations and data storage. Despite being regarded as the ultimate solution for high-density integration and low-power manipulation, the use of spin or electric dipole at the single-molecule level to realize in-memory logic functions has yet to be realized at room temperature, due to their random orientation. Here, we demonstrate logic-in-memory operations, based on single electric dipole flipping in a two-terminal single-metallofullerene (Sc2C2@Cs(hept)-C88) device at room temperature. By applying a low voltage of ±0.8 V to the single-metallofullerene junction, we found that the digital information recorded among the different dipole states could be reversibly encoded in situ and stored. As a consequence, 14 types of Boolean logic operation were shown from a single-metallofullerene device. Density functional theory calculations reveal that the non-volatile memory behaviour comes from dipole reorientation of the [Sc2C2] group in the fullerene cage. This proof-of-concept represents a major step towards room-temperature electrically manipulated, low-power, two-terminal in-memory logic devices and a direction for in-memory computing using nanoelectronic devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The mechanism of the single-metallofullerene memory device.
Fig. 2: Single-molecule conductance measurements and the in situ two-conductance-state switching and storage operations of single-Sc2C2@Cs(hept)-C88 devices.
Fig. 3: Boolean logic operations in single-metallofullerene devices of Sc2C2@Cs(hept)-C88.
Fig. 4: The two-state memristive mechanism of Sc2C2@Cs(hept)-C88.

Similar content being viewed by others

Data availability

The authors declare that the main data supporting the findings of this study are available within this article and its Supplementary Information. Source data are provided with this paper. Extra data are available from the corresponding authors upon request.

Code availability

The data analysis of conductance measurements was performed using our open-source code XME analysis, which is available at https://github.com/Pilab-XMU/XMe_DataAnalysis. The computation details can be made available from the corresponding authors upon request.

References

  1. Ielmini, D. & Wong, H. S. P. In-memory computing with resistive switching devices. Nat. Electron. 1, 333–343 (2018).

    Article  Google Scholar 

  2. Yu, S. Neuro-inspired computing with emerging nonvolatile memorys. Proc. IEEE 106, 260–285 (2018).

    Article  CAS  Google Scholar 

  3. Yang, J. J., Strukov, D. B. & Stewart, D. R. Memristive devices for computing. Nat. Nanotechol. 8, 13–24 (2013).

    Article  CAS  Google Scholar 

  4. Borghetti, J. et al. ‘Memristive’ switches enable ‘stateful’ logic operations via material implication. Nature 464, 873–876 (2010).

    Article  CAS  Google Scholar 

  5. Strukov, D. B., Snider, G. S., Stewart, D. R. & Williams, R. S. The missing memristor found. Nature 453, 80–83 (2008).

    Article  CAS  Google Scholar 

  6. Zhang, W., Mazzarello, R., Wuttig, M. & Ma, E. Designing crystallization in phase-change materials for universal memory and neuro-inspired computing. Nat. Rev. Mater. 4, 150–168 (2019).

    Article  CAS  Google Scholar 

  7. Grollier, J. et al. Neuromorphic spintronics. Nat. Electron. 3, 360–370 (2020).

    Article  Google Scholar 

  8. Guo, R., Lin, W., Yan, X., Venkatesan, T. & Chen, J. Ferroic tunnel junctions and their application in neuromorphic networks. Appl. Phys. Rev. 7, 011304 (2020).

    Article  CAS  Google Scholar 

  9. Cho, B. et al. Rewritable switching of one diode-one resistor nonvolatile organic memory devices. Adv. Mater. 22, 1228–1232 (2010).

    Article  CAS  Google Scholar 

  10. Cho, B., Song, S., Ji, Y., Kim, T.-W. & Lee, T. Organic resistive memory devices: performance enhancement, integration, and advanced architectures. Adv. Funct. Mater. 21, 2806–2829 (2011).

    Article  CAS  Google Scholar 

  11. Busche, C. et al. Design and fabrication of memory devices based on nanoscale polyoxometalate clusters. Nature 515, 545–549 (2014).

    Article  CAS  Google Scholar 

  12. Goswami, S. et al. Charge disproportionate molecular redox for discrete memristive and memcapacitive switching. Nat. Nanotechol. 15, 380–389 (2020).

    Article  CAS  Google Scholar 

  13. Han, Y. et al. Electric-field-driven dual-functional molecular switches in tunnel junctions. Nat. Mater. 19, 843–848 (2020).

    Article  CAS  Google Scholar 

  14. Goswami, S. et al. Decision trees within a molecular memristor. Nature 597, 51–56 (2021).

    Article  CAS  Google Scholar 

  15. Lörtscher, E., Ciszek, J. W., Tour, J. & Riel, H. J. S. Reversible and controllable switching of a single‐molecule junction. Small 2, 973–977 (2006).

    Article  CAS  Google Scholar 

  16. Li, H. B., Tebikachew, B. E., Wiberg, C., Moth-Poulsen, K. & Hihath, J. A memristive element based on an electrically controlled single-molecule reaction. Angew. Chem. Int. Ed. 59, 11641–11646 (2020).

    Article  CAS  Google Scholar 

  17. Zhang, K. et al. A Gd@C82 single-molecule electret. Nat. Nanotechol. 15, 1019–1024 (2020).

    Article  CAS  Google Scholar 

  18. Khajetoorians, A. A., Wiebe, J., Chilian, B. & Wiesendanger, R. Realizing all-spin-based logic operations atom by atom. Science 332, 1062–1064 (2011).

    Article  CAS  Google Scholar 

  19. Sessoli, R., Gatteschi, D., Caneschi, A. & Novak, M. A. Magnetic bistability in a metal-ion cluster. Nature 365, 141–143 (1993).

    Article  CAS  Google Scholar 

  20. Kato, C. et al. Giant hysteretic single-molecule electric polarisation switching above room temperature. Angew. Chem. Int. Ed. 57, 13429–13432 (2018).

    Article  CAS  Google Scholar 

  21. Nishihara, S. Welcome to the single-molecule electret device. Nat. Nanotechol. 15, 966–967 (2020).

    Article  CAS  Google Scholar 

  22. Meded, V., Bagrets, A., Arnold, A. & Evers, F. J. S. Molecular switch controlled by pulsed bias voltages. Small 5, 2218–2223 (2009).

    Article  CAS  Google Scholar 

  23. Zabala-Lekuona, A., Seco, J. M. & Colacio, E. Single-molecule magnets: from Mn12-ac to dysprosium metallocenes, a travel in time. Coord. Chem. Rev. 441, 213984 (2021).

    Article  CAS  Google Scholar 

  24. Ward, D. R., Corley, D. A., Tour, J. M. & Natelson, D. Vibrational and electronic heating in nanoscale junctions. Nat. Nanotechol. 6, 33–38 (2011).

    Article  CAS  Google Scholar 

  25. Twamley, J., Utami, D. W., Goan, H. S. & Milburn, G. Spin-detection in a quantum electromechanical shuttle system. New J. Phys. 8, 63–63 (2006).

    Article  CAS  Google Scholar 

  26. Kurihara, H. et al. Sc2C2@C80 rather than Sc2@C82: templated formation of unexpected C2v(5)-C80 and temperature-dependent dynamic motion of internal Sc2C2 cluster. J. Am. Chem. Soc. 133, 2382–2385 (2011).

    Article  CAS  Google Scholar 

  27. Foroutan-Nejad, C., Andrushchenko, V. & Straka, M. Dipolar molecules inside C70: an electric field-driven room-temperature single-molecule switch. Phys. Chem. Chem. Phys. 18, 32673–32677 (2016).

    Article  CAS  Google Scholar 

  28. Jaroš, A., Bonab, E. F., Straka, M. & Foroutan-Nejad, C. Fullerene-based switching molecular diodes controlled by oriented external electric fields. J. Am. Chem. Soc. 141, 19644–19654 (2019).

    Article  CAS  Google Scholar 

  29. Chen, C. H. et al. Zigzag Sc2C2 carbide cluster inside a [88]fullerene cage with one heptagon, Sc2C2@Cs(hept)-C88: a kinetically trapped fullerene formed by C2 insertion?. J. Am. Chem. Soc. 138, 13030–13037 (2016).

    Article  CAS  Google Scholar 

  30. Deng, Q. & Popov, A. A. Clusters encapsulated in endohedral metallofullerenes: how strained are they? J. Am. Chem. Soc. 136, 4257–4264 (2014).

    Article  CAS  Google Scholar 

  31. Jin, P., Tang, C. & Chen, Z. Carbon atoms trapped in cages: metal carbide clusterfullerenes. Coord. Chem. Rev. 270-271, 89–111 (2014).

    Article  CAS  Google Scholar 

  32. Venkataraman, L., Klare, J. E., Nuckolls, C., Hybertsen, M. S. & Steigerwald, M. L. Dependence of single-molecule junction conductance on molecular conformation. Nature 442, 904–907 (2006).

    Article  CAS  Google Scholar 

  33. Xu, B. & Tao, N. J. Measurement of single-molecule resistance by repeated formation of molecular junctions. Science 301, 1221–1223 (2003).

    Article  CAS  Google Scholar 

  34. Hong, W. et al. Single molecular conductance of tolanes: experimental and theoretical study on the junction evolution dependent on the anchoring group. J. Am. Chem. Soc. 134, 2292–2304 (2012).

    Article  CAS  Google Scholar 

  35. Moreno-Garcia, P. et al. Charge transport in C60-based dumbbell-type molecules: mechanically induced switching between two distinct conductance states. J. Am. Chem. Soc. 137, 2318–2327 (2015).

    Article  CAS  Google Scholar 

  36. Rincon-Garcia, L. et al. Molecular design and control of fullerene-based bi-thermoelectric materials. Nat. Mater. 15, 289–293 (2016).

    Article  CAS  Google Scholar 

  37. Bai, J. et al. Anti-resonance features of destructive quantum interference in single-molecule thiophene junctions achieved by electrochemical gating. Nat. Mater. 18, 364–369 (2019).

    Article  CAS  Google Scholar 

  38. Linn, E., Rosezin, R., Tappertzhofen, S., Bottger, U. & Waser, R. Beyond von Neumann–logic operations in passive crossbar arrays alongside memory operations. Nanotechnology 23, 305205 (2012).

    Article  CAS  Google Scholar 

  39. Chandler, H. J., Stefanou, M., Campbell, E. E. B. & Schaub, R. Li@C60 as a multi-state molecular switch. Nat. Commun. 10, 2283 (2019).

    Article  CAS  Google Scholar 

  40. Huang, T. et al. A molecular switch based on current-driven rotation of an encapsulated cluster within a fullerene cage. Nano Lett. 11, 5327–5332 (2011).

    Article  CAS  Google Scholar 

  41. Miyamachi, T. et al. Robust spin crossover and memristance across a single molecule. Nat. Commun. 3, 938 (2012).

    Article  CAS  Google Scholar 

  42. Soler, J. M. et al. The SIESTA method for ab initio order-materials simulation. J. Phys. Condens. Matter 14, 2745–2779 (2002).

    Article  CAS  Google Scholar 

  43. Morley, G. W. et al. Hyperfine structure of Sc@C82 from ESR and DFT. Nanotechnology 16, 2469–2473 (2005).

    Article  CAS  Google Scholar 

  44. Leigh, D. F. et al. Distinguishing two isomers of Nd@C82 by scanning tunneling microscopy and density functional theory. Chem. Phys. Lett. 414, 307–310 (2005).

    Article  CAS  Google Scholar 

  45. Ferrer, J. et al. GOLLUM: a next-generation simulation tool for electron, thermal and spin transport. New J. Phys. 16, 093029 (2014).

    Article  Google Scholar 

  46. Yao, Y.-R. et al. Atomically precise insights into metal–metal bonds using comparable endo-units of Sc2 and Sc2C2. CCS Chem. 3, 294–302 (2021).

    Article  CAS  Google Scholar 

  47. Capozzi, B. et al. Single-molecule diodes with high rectification ratios through environmental control. Nat. Nanotechol. 10, 522–527 (2015).

    Article  CAS  Google Scholar 

  48. Schwarz, F. et al. Charge transport and conductance switching of redox-active azulene derivatives. Angew. Chem. Int. Ed. 55, 11781–11786 (2016).

    Article  CAS  Google Scholar 

  49. Henkelman, G. & Jónsson, H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 113, 9978–9985 (2000).

    Article  CAS  Google Scholar 

  50. Henkelman, G., Uberuaga, B. P. & Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).

    Article  CAS  Google Scholar 

  51. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  52. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  53. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B. 50, 17953–17979 (1994).

    Article  Google Scholar 

  54. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Programme of China (grant no. 2017YFA0204902 (W.H.)), the National Natural Science Foundation of China (grant nos. 92061204 (S.-Y.X.), 21933012 (J.-Y.L.), 31871877 (J.-Y.L.), 21973079 (Y.Y.), 22032004 (Y.Y.) and 21721001 (S.-Y.X.)), the Fundamental Research Funds for the Central Universities (grant no. 20720200068 (J.-Y.L.)), the UK EPSRC (grant nos. EP/M014452/1 (C.J.L.), EP/P027156/1 (C.J.L.) and EP/N03337X/1 (C.J.L.)). We thank J. Wang and L. Huang for their help with the STM-BJ equipment in the glove box.

Author information

Authors and Affiliations

Authors

Contributions

W.H., S.-Y.X. and J.L. conceived the idea for the paper. Y.-R.Y and S.-Y.X. synthesized and characterized the endohedral metallofullerene molecules. J.Z. fabricated the mechanically controllable break junction chips. J.L., H.-C.W., X.L., J.S., C.Z. and J.Z. measured the conductance, conductance–voltage and characterization of the in situ logic operation. S.H., Q.W. and C.J.L. conducted the theoretic calculations. J.L., H.Z., Y.W. and C.Z. discussed and produced the picture. C.T., M.W., J.-Y.L., W.X. and Y.Y. helped to discuss the mechanism. Z.P. and L.K. supported the data analysis. J.L., S.H., Q.W., C.J.L., S.-Y.X. and W.H. analysed and discussed the data and wrote the paper.

Corresponding authors

Correspondence to Colin J. Lambert, Su-Yuan Xie or Wenjing Hong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Andrew Briggs and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–25, Discussion and Table 1.

Supplementary Data 1

The raw ultraviolet–visible, mass data and GV data.

Supplementary Data 1

Two-state-switching and logic-in-memory operation data.

Supplementary Data 1

Charge transport and computation data.

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Computation data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Hou, S., Yao, YR. et al. Room-temperature logic-in-memory operations in single-metallofullerene devices. Nat. Mater. 21, 917–923 (2022). https://doi.org/10.1038/s41563-022-01309-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-022-01309-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing