Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Multipole polaron in the devil’s staircase of CeSb

Abstract

Rare-earth intermetallic compounds exhibit rich phenomena induced by the interplay between localized f orbitals and conduction electrons. However, since the energy scale of the crystal-electric-field splitting is only a few millielectronvolts, the nature of the mobile electrons accompanied by collective crystal-electric-field excitations has not been unveiled. Here, we examine the low-energy electronic structures of CeSb through the anomalous magnetostructural transitions below the Néel temperature, ~17 K, termed the ‘devil’s staircase’, using laser angle-resolved photoemission, Raman and neutron scattering spectroscopies. We report another type of electron–boson coupling between mobile electrons and quadrupole crystal-electric-field excitations of the 4f orbitals, which renormalizes the Sb 5p band prominently, yielding a kink at a very low energy (~7 meV). This coupling strength is strong and exhibits anomalous step-like enhancement during the devil’s staircase transition, unveiling a new type of quasiparticle, named the ‘multipole polaron’, comprising a mobile electron dressed with a cloud of the quadrupole crystal-electric-field polarization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Magnetostructures established in the devil’s staircase of CeSb.
Fig. 2: Electron–boson coupling of the Sb 5p hole band.
Fig. 3: Raman spectra for CEF excitations and multipole polaron.
Fig. 4: Multipole polaron throughout the devil’s staircase.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon request.

References

  1. Reznik, D. et al. Electron–phonon coupling reflecting dynamic charge inhomogeneity in copper oxide superconductors. Nature 440, 1170–1173 (2006).

    Article  CAS  Google Scholar 

  2. Teresa, J. M. D. et al. Evidence for magnetic polarons in the magnetoresistive perovskites. Nature 386, 256–259 (1997).

    Article  Google Scholar 

  3. Millis, A. J. Lattice effects in magnetoresistive manganese perovskites. Nature 392, 147–150 (1998).

    Article  CAS  Google Scholar 

  4. Devreese, J. T. Polarons in Digital Encyclopedia of Applied Physics (Wiley VHC Verlag, 2003) https://doi.org/10.1002/3527600434.eap347

  5. Damascelli, A., Hussain, Z. & Shen, Z.-X. Angle-resolved photoemission studies of the cuprate superconductors. Rev. Mod. Phys. 75, 473–541 (2003).

    Article  CAS  Google Scholar 

  6. Valla, T., Fedorov, A. V., Johnson, P. D. & Hulbert, S. L. Many-body effects in angle-resolved photoemission: quasiparticle energy and lifetime of a Mo(110) surface state. Phys. Rev. Lett. 83, 2085–2088 (1999).

    Article  CAS  Google Scholar 

  7. Lanzara, A. et al. Evidence for ubiquitous strong electron–phonon coupling in high-temperature superconductors. Nature 412, 510–514 (2001).

    Article  CAS  Google Scholar 

  8. Schäfer, J. et al. Electronic quasiparticle renormalization on the spin wave energy scale. Phys. Rev. Lett. 92, 097205 (2004).

    Article  Google Scholar 

  9. Dahm, T. et al. Strength of the spin-fluctuation-mediated pairing interaction in a high-temperature superconductor. Nat. Phys. 5, 217–221 (2009).

    Article  CAS  Google Scholar 

  10. Bostwick, A. et al. Observation of plasmarons in quasi-freestanding doped graphene. Science 328, 999–1002 (2010).

    Article  CAS  Google Scholar 

  11. Bak, P. The devil’s staircase. Phys. Today 39, 38–45 (1986).

    Article  Google Scholar 

  12. Rossat-Mignod, J. et al. Phase diagram and magnetic structures of CeSb. Phys. Rev. B 16, 440–461 (1977).

    Article  CAS  Google Scholar 

  13. Fischer, P., Meier, G., Lebech, B., Rainford, B. D. & Vogt, O. Magnetic phase transitions of CeSb. I. Zero applied magnetic field. J. Phys. C 11, 345–364 (1978).

    Article  CAS  Google Scholar 

  14. Rossat-Mignod, J., Burlet, P., Bartholin, H., Vogt, O. & Lagnier, R. Specific heat analysis of the magnetic phase diagram of CeSb. J. Phys. C 13, 6381–6389 (1980).

    Article  CAS  Google Scholar 

  15. Hulliger, F., Landolt, M., Ott, H. & Schmelczer, R. Low-temperature magnetic phase transitions of CeBi and CeSb. J. Low Temp. Phys. 20, 269–284 (1975).

    Article  CAS  Google Scholar 

  16. Iwasa, K., Hannan, A., Kohgi, M. & Suzuki, T. Direct observation of the modulation of the 4f-electron orbital state by strong p–f mixing in CeSb. Phys. Rev. Lett. 88, 207201 (2002).

    Article  Google Scholar 

  17. Mori, N., Okayama, Y., Takahashi, H., Kwon, Y. & Suzuki, T. Pressure-induced electrical and magnetic properties in CeAs, CeSb and CeBi. J. Appl. Phys. 69, 4696–4698 (1991).

    Article  CAS  Google Scholar 

  18. Ye, L., Suzuki, T., Wicker, C. R. & Checkelsky, J. G. Extreme magnetoresistance in magnetic rare-earth monopnictides. Phys. Rev. B 97, 081108 (2018).

    Article  CAS  Google Scholar 

  19. Xu, J. et al. Orbital-flop induced magnetoresistance anisotropy in rare earth monopnictide CeSb. Nat. Commun. 10, 2875 (2019).

    Article  Google Scholar 

  20. Kumigashira, H. et al. Paramagnetic-to-antiferroparamagnetic phase transition of CeSb studied by high-resolution angle-resolved photoemission. Phys. Rev. B 56, 13654 (1997).

    Article  CAS  Google Scholar 

  21. Takayama, A., Souma, S., Sato, T., Arakane, T. & Takahashi, T. Magnetic phase transition of CeSb studied by low-energy angle-resolved photoemission spectroscopy. J. Phys. Soc. Jpn 78, 073702 (2009).

    Article  Google Scholar 

  22. Jang, S. et al. Direct visualization of coexisting channels of interaction in CeSb. Sci. Adv. 5, eaat7158 (2019).

    Article  CAS  Google Scholar 

  23. Kuroda, K. et al. Devil’s staircase transition of the electronic structures in CeSb. Nat. Commun. 11, 2888 (2020).

    Article  CAS  Google Scholar 

  24. Nishi, T. et al. Infrared spectroscopy under multiextreme conditions: direct observation of pseudogap formation and collapse in CeSb. Phys. Rev. B 71, 220401 (2005).

    Article  Google Scholar 

  25. Takahashi, H. & Kasuya, T. Anisotropic p-f mixing mechanism explaining anomalous magnetic properties in Ce monopnictides. V. Various ordered states and phase diagrams. J. Phys. C 18, 2745 (1985).

    Article  CAS  Google Scholar 

  26. Kasuya, T. Physics in low carrier strongly correlated systems: Kondo insulator magnetic polaron and high Tc. Physica B 215, 88–98 (1995).

    Article  Google Scholar 

  27. Shimojima, T., Okazaki, K. & Shin, S. Low-temperature and high-energy-resolution laser photoemission spectroscopy. J. Phys. Soc. Jpn 84, 072001 (2015).

    Article  Google Scholar 

  28. Yeh, J. & Lindau, I. Atomic subshell photoionization cross sections and asymmetry parameters: 1  Z  103. At. Data Nucl. Data Tables 32, 1–155 (1985).

    Article  CAS  Google Scholar 

  29. Kawamura, M., Hizume, Y. & Ozaki, T. Benchmark of density functional theory for superconductors in elemental materials. Phys. Rev. B 101, 134511 (2020).

    Article  CAS  Google Scholar 

  30. Tütüncü, H. M., Bagci, S. & Srivastava, G. P. Electronic, elastic and phonon properties of the rock-salt LaSb and YSb. J. Phys. Condens. Matter 19, 156207 (2007).

    Article  Google Scholar 

  31. Rossat-Mignod, J. et al. Neutron and magnetization studies of CeSb and CeSb1–xTex solid solutions. J. Magn. Magn. Mater. 52, 111–121 (1985).

    Article  CAS  Google Scholar 

  32. Hälg, B. & Furrer, A. Anisotropic exchange and spin dynamics in the type-I (-IA) antiferromagnets CeAs, CeSb, and USb: a neutron study. Phys. Rev. B 34, 6258–6279 (1986).

    Article  Google Scholar 

  33. Thalmeier, P. & Lüthi, B. in Handbook on the Physics and Chemistry of Rare Earths, Vol. 14 (eds Gschneidner Jr, K. A. & Eyring, L.) Ch. 96 (Elsevier, 1991).

  34. Iwasa, K. et al. Crystal-lattice modulation and phonon anomaly associated with strong pf mixing effect of CeSb. Appl. Phys. A 74, s1779–s1781 (2002).

    Article  CAS  Google Scholar 

  35. Güntherodt, G., Jayaraman, A., Batlogg, G., Croft, M. & Melczer, E. Raman scattering from coupled phonon and electronic crystal-field excitations in CeAl2. Phys. Rev. Lett. 51, 2330–2332 (1983).

    Article  Google Scholar 

  36. Sethi, A., Slimak, J. E., Kolodiazhnyi, T. & Cooper, S. L. Emergent vibronic excitations in the magnetodielectric regime of Ce2O3. Phys. Rev. Lett. 122, 177601 (2019).

    Article  CAS  Google Scholar 

  37. Wang, Z. et al. Tailoring the nature and strength of electron–phonon interactions in the SrTiO3(001) 2d electron liquid. Nat. Mater. 15, 835–839 (2016).

    Article  CAS  Google Scholar 

  38. Verdi, C., Caruso, F. & Giustino, F. Origin of the crossover from polarons to Fermi liquids in transition metal oxides. Nat. Commun. 8, 15769 (2017).

    Article  CAS  Google Scholar 

  39. Suzuki, T. et al. Anomalous physical properties of the low carrier concentration state in f-electron systems. Physica B Condens. Matter 206–207, 771–779 (1995).

    Article  Google Scholar 

  40. Pfleiderer, C. Superconducting phases of f-electron compounds. Rev. Mod. Phys. 81, 1551–1624 (2009).

    Article  CAS  Google Scholar 

  41. Li, H. et al. Coherent organization of electronic correlations as a mechanism to enhance and stabilize high-TC cuprate superconductivity. Nat. Commun. 9, 26 (2018).

    Article  Google Scholar 

  42. Cuk, T. et al. Coupling of the B1g phonon to the antinodal electronic states of Bi2Sr2Ca0.92Y0.08Cu2O8+δ. Phys. Rev. Lett. 93, 117003 (2004).

    Article  CAS  Google Scholar 

  43. Fobes, D. M. et al. Tunable emergent heterostructures in a prototypical correlated metal. Nat. Phys. 14, 456–460 (2018).

    Article  CAS  Google Scholar 

  44. Kuroda, K. et al. Experimental determination of the topological phase diagram in cerium monopnictides. Phys. Rev. Lett. 120, 086402 (2018).

    Article  CAS  Google Scholar 

  45. Kusunose, H. Description of multipole in f-electron systems. J. Phys. Soc. Jpn 77, 064710 (2008).

    Article  Google Scholar 

  46. Katakura, I. et al. Development of high-speed polarizing imaging system for operation in high pulsed magnetic field. Rev. Sci. Instrum. 81, 043701 (2010).

    Article  CAS  Google Scholar 

  47. Giannozzi, P. et al. Advanced capabilities for materials modelling with quantum ESPRESSO. J. Phys. Condens. Matter 29, 465901 (2017).

    Article  CAS  Google Scholar 

  48. Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).

    Article  Google Scholar 

  49. Samsonov, G. V., Abdusalyamova, M. N., Shokirov, K. & Pryakhina, S. A. Physico-chemical properties of rare earth monoantimonides. Izv. Akad. Nauk SSSR, Neorg. Mater. 10, 1951–1954 (1974).

    CAS  Google Scholar 

  50. Hamann, D. R. Optimized norm-conserving Vanderbilt pseudopotentials. Phys. Rev. B 88, 085117 (2013).

    Article  Google Scholar 

  51. Scherpelz, P., Govoni, M., Hamada, I. & Galli, G. Implementation and validation of fully relativistic GW calculations: spin–orbit coupling in molecules, nanocrystals, and solids. J. Chem. Theory Comput. 12, 3523–3544 (2016).

    Article  CAS  Google Scholar 

  52. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  53. Baroni, S., de Gironcoli, S., Dal Corso, A. & Giannozzi, P. Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 73, 515–562 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge H. Kusunose, M. Kawamura and S. Tsutsui for fruitful discussions, and M. Kohgi, J.-M. Mignot and M. Braden for support of the INS experiments. This work was supported by Japan’s Ministry of Education, Culture, Sports, Science and Technology’s Quantum Leap Flagship Program (MEXT Q-LEAP, grant number JPMXS0118068681), the Ministry of Education, Culture, Sports, Science and Technology’s ‘Program for Promoting Researches on the Supercomputer Fugaku’ (Basic Science for Emergence and Functionality in Quantum Matter Innovative Strongly Correlated Electron Science by Integration of ‘Fugaku’ and Frontier Experiments, project number hp200132), JST ERATO-FS grant number JPMJER2105, the Murata Science Foundation, Grants-in-Aid for Scientific Research (grant numbers JP21H04439, JP20H01848, JP19H00651, JP19H02683, JP19F19030, JP18H01165, JP18H01182A and JP16H06345) and Grants-in-Aids for Scientific Research on Innovative Areas, ‘Quantum Liquid Crystals’ (grant number 19H05825) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

Author information

Authors and Affiliations

Authors

Contributions

Y.A. and K. Kuroda performed the laser ARPES experiments and analysed the data. S. Sakuragi, C.B., S.A., K. Kurokawa, S. Shin and T.K. supported the laser ARPES experiments. Y.A., K. Kuroda, S. Sakuragi, W.-L.Z., Z.H.T., S.M. and S.T. conducted the Raman spectroscopy and analysed the data. H.S.S., H.K. and Y.H. made the high-quality CeSb single crystals. Y.A., K. Kuroda., S. Sakuragi, Y.K. and M.T. performed the polarizing microscopy. K.I. performed the neutron scattering spectroscopy. T.N. and R.A. provided theoretical insights. Y.A., K. Kuroda and T.K. wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Kenta Kuroda.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Jonathan Denlinger, Jian-Xin Zhu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–6 and Figs. 1–7.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arai, Y., Kuroda, K., Nomoto, T. et al. Multipole polaron in the devil’s staircase of CeSb. Nat. Mater. 21, 410–415 (2022). https://doi.org/10.1038/s41563-021-01188-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-021-01188-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing