Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Molecular weaving

Abstract

Historically, the interlacing of strands at the molecular level has mainly been limited to coordination polymers and DNA. Despite being proposed on a number of occasions, the direct, bottom-up assembly of molecular building blocks into woven organic polymers remained an aspirational, but elusive, target for several decades. However, recent successes in two-dimensional and three-dimensional molecular-level weaving now offer new opportunities and research directions at the interface of polymer science and molecular nanotopology. This Perspective provides an overview of the features and potential of the periodic nanoscale weaving of polymer chains, distinguishing it from randomly entangled polymer networks and rigid crystalline frameworks. We review the background and experimental progress so far, and conclude by considering the potential of molecular weaving and outline some of the current and future challenges in this emerging field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Busch and Hubin’s concept of ‘true’ molecular weaving and recent experimental examples of molecularly woven structures.
Fig. 2: Methodology for controlling crossing stereochemistry and connectivity.
Fig. 3: Overview of frameworks used to model random molecular-level entanglements.
Fig. 4: Examples of strategies to synthesize molecularly woven materials.

Similar content being viewed by others

References

  1. Kadolph, S. J. (ed.) Textiles 10th edn (Prentice-Hall, 2007).

  2. Dietrich-Buchecker, C. O., Sauvage, J.-P. & Kintzinger, J.-P. Une nouvelle famille de molecules: les metallo-catenanes. Tetrahedron Lett. 24, 5095–5098 (1983).

    Article  CAS  Google Scholar 

  3. Thompson, M. C. & Busch, D. H. Reactions of coordinated ligands. IX. Utilization of the template hypothesis to synthesize macrocyclic ligands in situ. J. Am. Chem. Soc. 86, 3651–3656 (1964).

    Article  CAS  Google Scholar 

  4. Busch, D. H. Structural definition of chemical templates and the prediction of new and unusual materials. J. Inclusion Phenom. Mol. Recognit. Chem. 12, 389–395 (1992).

    Article  CAS  Google Scholar 

  5. Hubin, T. J. & Busch, D. H. Template routes to interlocked molecular structures and orderly molecular entanglements. Coord. Chem. Rev. 200–202, 5–52 (2000).

    Article  Google Scholar 

  6. Leigh, D. A., Lemonnier, J.-F. & Woltering, S. L. Comment on “Coordination-driven self-assembly of a molecular knot comprising sixteen crossings”. Angew. Chem. Int. Ed. 57, 12212–12214 (2018).

    Article  CAS  Google Scholar 

  7. Adams, C. C. The Knot Book (Freeman, 1994).

  8. Bruns, C. J. & Stoddart, J. F. The Nature of the Mechanical Bond: From Molecules to Machines (Wiley, 2016).

  9. Sauvage, J.-P. From chemical topology to molecular machines (Nobel lecture). Angew. Chem. Int. Ed. 56, 11080–11093 (2017).

    Article  CAS  Google Scholar 

  10. Dietrich-Buchecker, C., Colasson, B., Jouvenot, D. & Sauvage, J.-P. Synthesis of multi‐1,10‐phenanthroline ligands with 1,3‐phenylene linkers and their lithium complexes. Chem. Eur. J. 11, 4374–4386 (2005).

    Article  CAS  Google Scholar 

  11. Piguet, C., Bernardinelli, G. & Hopfgartner, G. Helicates as versatile supramolecular complexes. Chem. Rev. 97, 2005–2062 (1997).

    Article  CAS  Google Scholar 

  12. Fielden, S. D. P., Leigh, D. A. & Woltering, S. L. Molecular knots. Angew. Chem. Int. Ed. 56, 11166–11194 (2017).

    Article  CAS  Google Scholar 

  13. Cougnon, F. B. L., Caprice, K., Pupier, M., Bauza, A. & Frontera, A. A strategy to synthesize molecular knots and links using the hydrophobic effect. J. Am. Chem. Soc. 140, 12442–12450 (2018).

    Article  CAS  Google Scholar 

  14. Segawa, Y. et al. Topological molecular nanocarbons: all-benzene catenane and trefoil knot. Science 365, 272–276 (2019).

    Article  CAS  Google Scholar 

  15. Stoddart, J. F. Dawning of the age of molecular nanotopology. Nano Lett. 20, 5597–5600 (2020).

    Article  CAS  Google Scholar 

  16. Guo, Q.-H., Jiao, Y., Feng, Y. & Stoddart, J. F. The rise and promise of molecular nanotopology. CCS Chem. 3, 1542–1572 (2021).

    Article  CAS  Google Scholar 

  17. Inomata, Y., Sawada, T. & Fujita, M. Metal–peptide torus knots from flexible short peptides. Chem 6, 294–303 (2020).

    Article  CAS  Google Scholar 

  18. Gao, W.-X., Feng, H.-J., Guo, B.-B., Lu, Y. & Jin, G.-X. Coordination-directed construction of molecular links. Chem. Rev. 120, 6288–6325 (2020).

    Article  CAS  Google Scholar 

  19. Ayme, J.-F. et al. A synthetic molecular pentafoil knot. Nat. Chem. 4, 15–20 (2012).

    Article  CAS  Google Scholar 

  20. Leigh, D. A., Pritchard, R. G. & Stephens, A. J. A Star of David catenane. Nat. Chem. 6, 978–982 (2014).

    Article  CAS  Google Scholar 

  21. Zhang, L. et al. Stereoselective synthesis of a composite knot with nine crossings. Nat. Chem. 10, 1083–1088 (2018).

    Article  CAS  Google Scholar 

  22. Danon, J. J. et al. Braiding a molecular knot with eight crossings. Science 355, 159–162 (2017).

    Article  CAS  Google Scholar 

  23. Leigh, D. A. et al. Tying different knots in a molecular strand. Nature 584, 562–568 (2020).

    Article  CAS  Google Scholar 

  24. Wang, X.-W. & Zhang, W.-B. Chemical topology and complexity of protein architectures. Trends Biochem. Sci. 43, 806–817 (2018).

    Article  CAS  Google Scholar 

  25. Forgan, R. S., Sauvage, J.-P. & Stoddart, J. F. Chemical topology: complex molecular knots, links, and entanglements. Chem. Rev. 9, 5434–5464 (2011).

    Article  Google Scholar 

  26. Dietrich-Buchecker, C. O. & Sauvage, J.-P. A synthetic molecular trefoil knot. Angew. Chem. Int. Ed. 28, 189–192 (1989).

    Article  Google Scholar 

  27. Guo, J., Mayers, P. C., Breault, G. A. & Hunter, C. A. Synthesis of a molecular trefoil knot by folding and closing on an octahedral coordination template. Nat. Chem. 2, 218–220 (2010).

    Article  CAS  Google Scholar 

  28. Barran, P. E. et al. Active metal template synthesis of a molecular trefoil knot. Angew. Chem. Int. Ed. 50, 12280–12284 (2011).

    Article  CAS  Google Scholar 

  29. Ponnuswamy, N., Cougnon, F. B. L., Clough, J. M., Pantos, G. D. & Sanders, J. K. M. Discovery of an organic trefoil knot. Science 338, 783–785 (2012).

    Article  CAS  Google Scholar 

  30. Prakasam, T. et al. Simultaneous self-assembly of a [2]catenane, a trefoil knot, and a Solomon link from a simple pair of ligands. Angew. Chem. Int. Ed. 52, 9956–9960 (2013).

    Article  CAS  Google Scholar 

  31. Zhang, G. et al. Lanthanide template synthesis of trefoil knots of single handedness. J. Am. Chem. Soc. 137, 10437–10442 (2015).

    Article  CAS  Google Scholar 

  32. Carpenter, J. P. et al. Controlling the shape and chirality of an eight-crossing molecular knot. Chem 7, 1534–1543 (2021).

  33. Leigh, D. A. et al. A molecular endless (74) knot. Nat. Chem. 13, 117–122 (2021).

    Article  CAS  Google Scholar 

  34. Nierengarten, J.-F., Dietrich-Buchecker, C. O. & Sauvage, J.-P. Synthesis of a doubly interlocked [2]catenane. J. Am. Chem. Soc. 116, 375–376 (1994).

    Article  CAS  Google Scholar 

  35. Beves, J. E., Danon, J. J., Leigh, D. A., Lemonnier, J.-F. & Vitorica-Yrezabal, I. J. A Solomon link through an interwoven molecular grid. Angew. Chem. Int. Ed. 54, 7555–7559 (2015).

    Article  CAS  Google Scholar 

  36. August, D. P., Jaramillo-Garcia, J., Leigh, D. A., Valero, A. & Vitorica-Yrezabal, I. J. A chiral cyclometalated iridium Star of David [2]catenane. J. Am. Chem. Soc. 143, 1154–1161 (2021).

    Article  CAS  Google Scholar 

  37. Gil-Ramírez, G., Leigh, D. A. & Stephens, A. J. Catenanes: fifty years of molecular links. Angew. Chem. Int. Ed. 54, 6110–6150 (2015).

    Article  Google Scholar 

  38. August, D. P. et al. Self-assembly of a layered two-dimensional molecularly woven fabric. Nature 588, 429–435 (2020).

    Article  CAS  Google Scholar 

  39. Liu, Y. et al. Weaving of organic threads into a crystalline covalent organic framework. Science 351, 365–369 (2016).

    Article  CAS  Google Scholar 

  40. Zhao, Y. et al. A synthetic route for crystals of woven structures, uniform nanocrystals, and thin films of imine covalent organic frameworks. J. Am. Chem. Soc. 139, 13166–13172 (2017).

    Article  CAS  Google Scholar 

  41. Liu, Y., O’Keeffe, M., Treacy, M. M. J. & Yaghi, O. M. The geometry of periodic knots, polycatenanes and weaving from a chemical perspective: a library for reticular chemistry. Chem. Soc. Rev. 47, 4642–4664 (2018).

    Article  CAS  Google Scholar 

  42. De Gennes, P. G. Reptation of a polymer chain in the presence of fixed obstacles. J. Chem. Phys. 55, 572–579 (1971).

    Article  Google Scholar 

  43. des Cloizeaux, J. Double reptation vs simple reptation in polymer melts. Europhys. Lett. 5, 437–442 (1988).

    Article  CAS  Google Scholar 

  44. Edwards, S. F. The statistical mechanics of polymerized material. Proc. Phys. Soc. 92, 9–16 (1967).

    Article  CAS  Google Scholar 

  45. Doi, M. & Takimoto, J. Molecular modelling of entanglement. Phil. Trans. R. Soc. Lond. A 361, 641–652 (2003).

  46. Hua, C. C. & Schieber, J. D. Segment connectivity, chain-length breathing, segmental stretch, and constraint release in reptation models. I. Theory and single-step strain predictions. J. Chem. 109, 10018–10027 (1998).

    CAS  Google Scholar 

  47. Edwards, S. F. & Vilgis, T. The effect of entanglements in rubber elasticity. Polymer 27, 483–492 (1986).

    Article  CAS  Google Scholar 

  48. Likhtman, A. E. Single-chain slip-link model of entangled polymers: simultaneous description of neutron spin–echo, rheology, and diffusion. Macromolecules 38, 6128–6139 (2005).

    Article  CAS  Google Scholar 

  49. Chappa, V. C., Morse, D. C., Zippelius, A. & Müller, M. Translationally invariant slip-spring model for entangled polymer dynamics. Phys. Lett. 109, 148302 (2012).

    Article  Google Scholar 

  50. Uneyama, T. & Masubuchi, Y. Multi-chain slip-spring model for entangled polymer dynamics. J. Chem. Phys. 137, 154902 (2012).

    Article  Google Scholar 

  51. Everaers, R. Rheology and microscopic topology of entangled polymeric liquids. Science 303, 823–826 (2004).

    Article  CAS  Google Scholar 

  52. Edwards, S. F. Statistical mechanics with topological constraints: I. Proc. Phys. Soc. 91, 513–519 (1967).

    Article  CAS  Google Scholar 

  53. Saitta, A. M., Soper, P. D., Wasserman, E. & Klein, M. L. Influence of a knot on the strength of a polymer strand. Nature 399, 46–48 (1999).

    Article  CAS  Google Scholar 

  54. Farago, O., Kantor, Y. & Kardar, M. Pulling knotted polymers. Europhys. Lett. 60, 53–59 (2002).

    Article  CAS  Google Scholar 

  55. Caraglio, M., Micheletti, C. & Orlandini, E. Stretching response of knotted and unknotted polymer chains. Phys. Rev. Lett. 115, 188301 (2015).

    Article  Google Scholar 

  56. Dai, L., Renner, C. B. & Doyle, P. S. Metastable tight knots in semiflexible chains. Macromolecules 47, 6135–6140 (2014).

    Article  CAS  Google Scholar 

  57. Klotz, A. R., Narsimhan, V., Soh, B. W. & Doyle, P. S. Dynamics of DNA knots during chain relaxation. Macromolecules 50, 4074–4082 (2017).

    Article  CAS  Google Scholar 

  58. Green, M. S. & Tobolsky, A. V. A new approach to the theory of relaxing polymeric media. J. Chem. Phys. 14, 80–92 (1946).

    Article  CAS  Google Scholar 

  59. Ball, R. C., Doi, M., Edwards, S. F. & Warner, M. Elasticity of entangled networks. Polymer 22, 1010–1018 (1981).

    Article  CAS  Google Scholar 

  60. Shchetnikava, V., Slot, J. & van Ruymbeke, E. Comparative analysis of different tube models for linear rheology of monodisperse linear entangled polymers. Polymers 11, 754 (2019).

    Article  CAS  Google Scholar 

  61. Watanabe, H. Viscoelasticity and dynamics of entangled polymers. Prog. Polym. Sci. 24, 1253–1403 (1999).

    Article  CAS  Google Scholar 

  62. McLeish, T. C. B. Tube theory of entangled polymer dynamics. Adv. Phys. 51, 1379–1527 (2002).

    Article  CAS  Google Scholar 

  63. Pawlak, A. The entanglements of macromolecules and their influence on the properties of polymers. Macromol. Chem. Phys. 10, 1900043 (2019).

    Article  Google Scholar 

  64. Karatrantos, A., Composto, R. J., Winey, K. I., Kröger, M. & Clarke, N. Modeling of entangled polymer diffusion in melts and nanocomposites: a review. Polymers 11, 876–905 (2019).

    Article  Google Scholar 

  65. Uneyama, T. & Masubuchi, Y. Plateau moduli of several single-chain slip-link and slip-spring models. Macromolecules 54, 1338–1353 (2021).

    Article  CAS  Google Scholar 

  66. Li, G. et al. Woven polymer networks via the topological transformation of a [2]catenane. J. Am. Chem. Soc. 142, 14343–14349 (2020).

    Article  CAS  Google Scholar 

  67. Cockriel, D. L. et al. The design and synthesis of pyrazine amide ligands suitable for the ‘tiles’ approach to molecular weaving with octahedral metal ions. Inorg. Chem. Commun. 11, 1–4 (2008).

    Article  CAS  Google Scholar 

  68. Wadhwa, N. R., Hughes, N. C., Hachem, J. A. & Mezei, G. Metal-templated synthesis of intertwined, functionalized strands as precursors to molecularly woven materials. RSC Adv. 6, 11430–11440 (2016).

    Article  CAS  Google Scholar 

  69. Ciengshin, T., Sha, R. & Seeman, N. C. Automatic molecular weaving prototyped by using single-stranded DNA. Angew. Chem. Int. Ed. 50, 4419–4422 (2011).

    Article  CAS  Google Scholar 

  70. Batten, S. R. & Robson, R. Interpenetrating nets: ordered, periodic entanglement. Angew. Chem. Int. Ed. 37, 1460–1494 (1998).

    Article  Google Scholar 

  71. Carlucci, L., Ciani, G. & Proserpio, D. M. Polycatenation, polythreading and polyknotting in coordination network chemistry. Coord. Chem. Rev. 246, 247–289 (2003).

    Article  CAS  Google Scholar 

  72. Van Calcar, P.M., Olmstead, M. M. & Balch, A. L. Construction of a knitted crystalline polymer through the use of gold(I)–gold(I) interactions. Chem. Commun. 1995, 1773–1774 (1995).

    Article  Google Scholar 

  73. Axtell, E. A., Liao, J.-H. & Kanatzidis, M. G. Flux synthesis of LiAuS and NaAuS: ‘Chicken-wire-like’ layer formation by interweaving of (AuS)nn threads. Comparison with α-HgS and AAuS (A = K, Rb). Inorg. Chem. 37, 5583–5587 (1998).

    Article  CAS  Google Scholar 

  74. Carlucci, L., Ciani, G., Gramaccioli, A., Proserpio, D. & Rizzato, S. Crystal engineering of coordination polymers and architectures using the [Cu(2,2′-bipy)]2+ molecular corner as building block (bipy = 2,2′- bipyridyl). CrystEngComm 2, 154–163 (2000).

    Article  Google Scholar 

  75. Li, Y.-H. et al. The first ‘two-over/two-under’ (2O/2U) 2D weave structure assembled from Hg-containing 1D coordination polymer chains. Chem. Commum. 2003, 1630–1631 (2003).

    Article  Google Scholar 

  76. Han, L. & Zhou, Y. 2D entanglement of 1D flexible zigzag coordination polymers leading to an interwoven network. Inorg. Chem. Commun. 11, 385–387 (2008).

    Article  CAS  Google Scholar 

  77. Wu, H., Yang, J., Su, Z.-M., Batten, S. R. & Ma, J.-F. An exceptional 54-fold interpenetrated coordination polymer with 103-srs network topology. J. Am. Chem. Soc. 133, 11406–11409 (2011).

    Article  CAS  Google Scholar 

  78. Champsaur, A. M. et al. Weaving nanoscale cloth through electrostatic templating. J. Am. Chem. Soc. 139, 11718–11721 (2017).

    Article  CAS  Google Scholar 

  79. Herdlitschka, A., Lewandowski, B. & Wennemers, H. Organic molecular weaves. Chimia 73, 450–454 (2019).

    Article  CAS  Google Scholar 

  80. Liu, Y. & O’Keeffe, M. Regular figures, minimal transitivity, and reticular chemistry. Isr. J. Chem. 58, 962–970 (2018).

    Article  CAS  Google Scholar 

  81. Xu, H.-S. et al. Divergent chemistry paths for 3D and 1D metallo-covalent organic frameworks. Angew. Chem. Int. Ed. 59, 11527–11532 (2020).

    Article  CAS  Google Scholar 

  82. Xu, H.-S. et al. Single crystal of a one-dimensional metallo-covalent organic framework. Nat. Commun. 11, 1434–1439 (2020).

    Article  CAS  Google Scholar 

  83. Lewandowska, U. et al. A triaxial supramolecular weave. Nat. Chem. 9, 1068–1072 (2017).

    Article  CAS  Google Scholar 

  84. Ashton, P. R. et al. Supramolecular weaving. Angew. Chem. Int. Ed. 36, 735–739 (1997).

    Article  CAS  Google Scholar 

  85. Huang, Q. et al. Dynamic molecular weaving in a two-dimensional hydrogen-bonded organic framework. Chem 7, 1321–1332 (2021).

    Article  CAS  Google Scholar 

  86. Wang, Z. et al. Molecular weaving via surface-templated epitaxy of crystalline coordination networks. Nat. Commun. 8, 14442–14449 (2017).

    Article  CAS  Google Scholar 

  87. Wu, Q. et al. Poly[n]catenanes: synthesis of molecular interlocked chains. Science 358, 1434–1439 (2017).

    Article  CAS  Google Scholar 

  88. Hawker, C. J. & Wooley, K. L. The convergence of synthetic organic and polymer chemistries. Science 309, 1200–1205 (2005).

    Article  CAS  Google Scholar 

  89. Wang, Q. & Schniepp, H. C. Strength of recluse spider’s silk originates from nanofibrils. ACS Macro Lett. 7, 1364–1370 (2018).

    Article  CAS  Google Scholar 

  90. Nguyen, H. L. et al. A porous covalent organic framework with voided square grid topology for atmospheric water harvesting. J. Am. Chem. Soc. 142, 2218–2221 (2020).

    Article  CAS  Google Scholar 

  91. Kantor, Y. & Hassold, G. N. Entanglements in random systems. Phys. Rev. A 40, 5334–5341 (1981).

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Engineering and Physical Sciences Research Council (EPSRC; EP/P027067/1), the European Research Council (ERC Advanced Grant 786630) and East China Normal University for funding, and T. Bouwens for bringing D.A.L.’s attention to the Latin root of ‘complexity’. D.A.L. is a Royal Society Research Professor.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to David A. Leigh or Liang Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, ZH., Andreassen, B.J., August, D.P. et al. Molecular weaving. Nat. Mater. 21, 275–283 (2022). https://doi.org/10.1038/s41563-021-01179-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-021-01179-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing