Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Solution processable metal–organic frameworks for mixed matrix membranes using porous liquids

Abstract

The combination of well-defined molecular cavities and chemical functionality makes crystalline porous solids attractive for a great number of technological applications, from catalysis to gas separation. However, in contrast to other widely applied synthetic solids such as polymers, the lack of processability of crystalline extended solids hampers their application. In this work, we demonstrate that metal–organic frameworks, a type of highly crystalline porous solid, can be made solution processable via outer surface functionalization using N-heterocyclic carbene ligands. Selective outer surface functionalization of relatively large nanoparticles (250 nm) of the well-known zeolitic imidazolate framework ZIF-67 allows for the stabilization of processable dispersions exhibiting permanent porosity. The resulting type III porous liquids can either be directly deployed as liquid adsorbents or be co-processed with state-of-the-art polymers to yield highly loaded mixed matrix membranes with excellent mechanical properties and an outstanding performance in the challenging separation of propylene from propane. We anticipate that this approach can be extended to other metal–organic frameworks and other applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Comparison between pristine and modified ZIF-67.
Fig. 2: Linker substitution energies.
Fig. 3: Gas adsorption and breakthrough curves of propylene/methane mixture on porous liquid.
Fig. 4: Physical characterization of membranes.
Fig. 5: Gas permeation properties.

Similar content being viewed by others

Data availability

All data generated and/or analysed in this study are included in this published article and its supplementary information file and are also available from the corresponding author (Jorge Gascon) on reasonable request.

References

  1. Bavykina, A. & Gascon, J. An efficient nanosieve. Nat. Mater. 17, 1057–1058 (2018).

    CAS  Google Scholar 

  2. Rogge, S. M. J. et al. Metal–organic and covalent organic frameworks as single-site catalysts. Chem. Soc. Rev. 46, 3134–3184 (2017).

    CAS  Google Scholar 

  3. Baker, R. W. & Low, B. T. Gas separation membrane materials: a perspective. Macromolecules 47, 6999–7013 (2014).

    CAS  Google Scholar 

  4. Dechnik, J., Gascon, J., Doonan, C. J., Janiak, C. & Sumby, C. J. Mixed-matrix membranes. Angew. Chem. Int. Ed. 56, 9292–9310 (2017).

    CAS  Google Scholar 

  5. Chung, T.-S., Jiang, L. Y., Li, Y. & Kulprathipanja, S. Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation. Prog. Polym. Sci. 32, 483–507 (2007).

    CAS  Google Scholar 

  6. Seoane, B. et al. Metal–organic framework based mixed matrix membranes: a solution for highly efficient CO2 capture? Chem. Soc. Rev. 44, 2421–2454 (2015).

    CAS  Google Scholar 

  7. Adams, R., Carson, C., Ward, J., Tannenbaum, R. & Koros, W. Metal organic framework mixed matrix membranes for gas separations. Microporous Mesoporous Mater. 131, 13–20 (2010).

    CAS  Google Scholar 

  8. Bavykina, A., Cadiau, A. & Gascon, J. Porous liquids based on porous cages, metal organic frameworks and metal organic polyhedra. Coord. Chem. Rev. 386, 85–95 (2019).

    CAS  Google Scholar 

  9. Shan, W. et al. New class of type III porous liquids: a promising platform for rational adjustment of gas sorption behavior. ACS Appl. Mater. Interfaces 10, 32–36 (2018).

    CAS  Google Scholar 

  10. Costa Gomes, M., Pison, L., Červinka, C. & Padua, A. Porous ionic liquids or liquid metal–organic frameworks? Angew. Chem. Int. Ed. 57, 11909–11912 (2018).

    CAS  Google Scholar 

  11. Devaux, A. et al. Solubilisation of dye-loaded zeolite L nanocrystals. Microporous Mesoporous Mater. 90, 69–72 (2006).

    CAS  Google Scholar 

  12. Crudden, C. M. et al. Ultra stable self-assembled monolayers of N-heterocyclic carbenes on gold. Nat. Chem. 6, 409–414 (2014).

    CAS  Google Scholar 

  13. Man, R. W. Y. et al. Ultrastable gold nanoparticles modified by bidentate N-heterocyclic carbene ligands. J. Am. Chem. Soc. 140, 1576–1579 (2018).

    CAS  Google Scholar 

  14. Hopkinson, M. N., Richter, C., Schedler, M. & Glorius, F. An overview of N-heterocyclic carbenes. Nature 510, 485–496 (2014).

  15. NIST Standard Reference Database Number 20 (National Institute of Standards and Technology, 2000).

  16. Li, X., Gao, X., Ai, L. & Jiang, J. Mechanistic insight into the interaction and adsorption of Cr(VI) with zeolitic imidazolate framework-67 microcrystals from aqueous solution. Chem. Eng. J. 274, 238–246 (2015).

    CAS  Google Scholar 

  17. Du, X.-D. et al. Extensive and selective adsorption of ZIF-67 towards organic dyes: performance and mechanism. J. Colloid Interface Sci. 506, 437–441 (2017).

    CAS  Google Scholar 

  18. Lin, K.-Y. A. & Chang, H.-A. Ultra-high adsorption capacity of zeolitic imidazole framework-67 (ZIF-67) for removal of malachite green from water. Chemosphere 139, 624–631 (2015).

    CAS  Google Scholar 

  19. Gross, A. F., Sherman, E. & Vajo, J. J. Aqueous room temperature synthesis of cobalt and zinc sodalite zeolitic imidizolate frameworks. Dalton Trans. 41, 5458–5460 (2012).

    CAS  Google Scholar 

  20. Zhu, Y. et al. Unravelling surface and interfacial structures of a metal–organic framework by transmission electron microscopy. Nat. Mater. 16, 532–536 (2017).

    CAS  Google Scholar 

  21. Xia, W. et al. Well-defined carbon polyhedrons prepared from nano metal–organic frameworks for oxygen reduction. J. Mater. Chem. A 2, 11606–11613 (2014).

    CAS  Google Scholar 

  22. Falivene, L., Kozlov, S. M. & Cavallo, L. Constructing bridges between computational tools in heterogeneous and homogeneous catalysis. ACS Catal. 8, 5637–5656 (2018).

    CAS  Google Scholar 

  23. O’Reilly, N., Giri, N. & James, S. L. Porous liquids. Chem. Eur. J. 13, 3020–3025 (2007).

    Google Scholar 

  24. James, S. L. The dam bursts for porous liquids. Adv. Mater. 28, 5712–5716 (2016).

    CAS  Google Scholar 

  25. Gaillac, R. et al. Liquid metal–organic frameworks. Nat. Mater. 16, 1149–1154 (2017).

    CAS  Google Scholar 

  26. Melaugh, G., Giri, N., Davidson, C. E., James, S. L. & Del Pópolo, M. G. Designing and understanding permanent microporosity in liquids. Phys. Chem. Chem. Phys. 16, 9422–9431 (2014).

    CAS  Google Scholar 

  27. Zhang, J. et al. Porous liquids: a promising class of media for gas separation. Angew. Chem. Int. Ed. 54, 932–936 (2015).

    CAS  Google Scholar 

  28. Ma, L. et al. Coordination cages as permanently porous ionic liquids. Nat. Chem. 12, 270–275 (2020).

    CAS  Google Scholar 

  29. Giri, N. et al. Liquids with permanent porosity. Nature 527, 216–220 (2015).

    CAS  Google Scholar 

  30. Hasell, T. et al. Controlling the crystallization of porous organic cages: molecular analogs of isoreticular frameworks using shape-specific directing solvents. J. Am. Chem. Soc. 136, 1438–1448 (2014).

    CAS  Google Scholar 

  31. Liu, S. et al. Porous liquid: a stable ZIF-8 colloid in ionic liquid with permanent porosity. Langmuir 34, 3654–3660 (2018).

    CAS  Google Scholar 

  32. Sochi, T. Non-Newtonian flow in porous media. Polymer 51, 5007–5023 (2010).

    CAS  Google Scholar 

  33. Dechnik, J., Sumby, C. J. & Janiak, C. Enhancing mixed-matrix membrane performance with metal–organic framework additives. Cryst. Growth Des. 17, 4467–4488 (2017).

    CAS  Google Scholar 

  34. Krokidas, P. et al. ZIF-67 framework: a promising new candidate for propylene/propane separation. Experimental data and molecular simulations. J. Phys. Chem. C. 120, 8116–8124 (2016).

    CAS  Google Scholar 

  35. Zhang, C., Dai, Y., Johnson, J. R., Karvan, O. & Koros, W. J. High performance ZIF-8/6FDA-DAM mixed matrix membrane for propylene/propane separations. J. Membr. Sci. 389, 34–42 (2012).

    CAS  Google Scholar 

  36. An, H., Park, S., Kwon, H. T., Jeong, H.-K. & Lee, J. S. A new superior competitor for exceptional propylene/propane separations: ZIF-67 containing mixed matrix membranes. J. Membr. Sci. 526, 367–376 (2017).

    CAS  Google Scholar 

  37. Liu, Y. et al. Conformation-controlled molecular sieving effects for membrane-based propylene/propane separation. Adv. Mater. 31, 1807513 (2019).

    Google Scholar 

  38. Liu, G. et al. Enabling fluorinated MOF-based membranes for simultaneous removal of H2S and CO2 from natural gas. Angew. Chem. Int. Ed. 57, 14811–14816 (2018).

    CAS  Google Scholar 

  39. Liu, D. et al. Rational matching between MOFs and polymers in mixed matrix membranes for propylene/propane separation. Chem. Eng. Sci. 204, 151–160 (2019).

    CAS  Google Scholar 

  40. Yu, J., Wang, C., Xiang, L., Xu, Y. & Pan, Y. Enhanced C3H6/C3H8 separation performance in poly(vinyl acetate) membrane blended with ZIF-8 nanocrystals. Chem. Eng. Sci. 179, 1–12 (2018).

    CAS  Google Scholar 

  41. Lin, R., Ge, L., Diao, H., Rudolph, V. & Zhu, Z. Propylene/propane selective mixed matrix membranes with grape-branched MOF/CNT filler. J. Mater. Chem. A 4, 6084–6090 (2016).

    CAS  Google Scholar 

  42. Askari, M. & Chung, T.-S. Natural gas purification and olefin/paraffin separation using thermal cross-linkable co-polyimide/ZIF-8 mixed matrix membranes. J. Membr. Sci. 444, 173–183 (2013).

    CAS  Google Scholar 

  43. Kwon, H. T., Jeong, H.-K., Lee, A. S., An, H. S. & Lee, J. S. Heteroepitaxially grown zeolitic imidazolate framework membranes with unprecedented propylene/propane separation performances. J. Am. Chem. Soc. 137, 12304–12311 (2015).

    CAS  Google Scholar 

  44. Zhou, S. et al. Paralyzed membrane: current-driven synthesis of a metal–organic framework with sharpened propene/propane separation. Sci. Adv. 4, eaau1393 (2018).

    CAS  Google Scholar 

  45. Wijmans, J. G. & Baker, R. W. The solution–diffusion model: a review. J. Membr. Sci. 107, 1–21 (1995).

    CAS  Google Scholar 

  46. Cooper, A. I. Porous molecular solids and liquids. ACS Cent. Sci. 3, 544–553 (2017).

    CAS  Google Scholar 

  47. Kraftschik, B., Koros, W. J., Johnson, J. R. & Karvan, O. Dense film polyimide membranes for aggressive sour gas feed separations. J. Memb. Sci. 428, 608–619 (2013).

    CAS  Google Scholar 

Download references

Acknowledgements

L.S., A.K. and J.C. acknowledge support by the Deutsche Forschungsgemeinschaft in the priority program SPP 1928 COORNETs (Coordination Networks: Building Block for Functional Systems), grant no. CA 147/20-1 (J.C.). R.A., S.K and L.C. acknowledge the Supercomputing Laboratory at KAUST for computational resources (Cray XC40, ShaheenII). We thank P. M. Bhatt for helping with the propylene/propane adsorption kinetic study. King Abdullah University of Science and Technology is acknowledged for financial support.

Author information

Authors and Affiliations

Authors

Contributions

J.G. and A.K. conceived and designed the project and managed cooperation between KAUST, LUH and DIK. A.K., L.S., L.G.-T. and A.B. were responsible for the synthesis and functionalization of the particles. A.K. and L.S. performed the X-ray dispersion, SEM and ATR-FTIR measurements. A.B. and S.J.D. were responsible for the adsorption measurements. A.B., L.G.-T. and S.D. performed the breakthrough measurements. D.S. and I.W. performed and helped with interpretation of the dynamic viscosity measurements. G.S. performed the X-ray photoelectron spectroscopy measurements. L.G.-T. performed NMR measurements. Y.L. proposed the use of and synthesized the carbenes. S.D. obtained adsorption isotherms on the liquid samples. S.J.D. and M.E. designed MMMs. S.J.D. fabricated and analysed MMMs and measured propylene and propane sorption isotherms on MOFs powder, MMMs and polymers. S.J.D. calculated solubility and diffusivity and described the MMM findings in the manuscript. M.K. performed membrane permeation tests. I.D.C. synthesized 6FDA-DHTM-Durene polymer. I.D.C. and S.J.D. characterized MMMs using SEM, X-ray diffraction, thermal gravimetric analysis and ATR-FTIR. R.A., S.K. and L.C. performed density functional theory simulations. A.K., L.S., A.B., J.C., S.J.D., R.A., S.K., L.C. and J.G. drafted the paper. All authors contributed to the writing of the manuscript.

Corresponding authors

Correspondence to Alexander Knebel, Anastasiya Bavykina, Yury Lebedev or Jorge Gascon.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary discussion, Figs. 1–54 and Tables 1–14.

Supplementary Video 1

Focused ion beam SEM reconstruction of a ZIF-67-IDip/6FDA-DAM MMM.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Knebel, A., Bavykina, A., Datta, S.J. et al. Solution processable metal–organic frameworks for mixed matrix membranes using porous liquids. Nat. Mater. 19, 1346–1353 (2020). https://doi.org/10.1038/s41563-020-0764-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-020-0764-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing