Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Semimetals for high-performance photodetection

Abstract

Semimetals are being explored for their unique advantages in low-energy high-speed photodetection, although they suffer from serious drawbacks such as an intrinsically high dark current. In this Perspective, we envision the exploitation of topological effects in the photoresponse of these materials as a promising route to circumvent these problems. We overview recent studies on photodetection based on graphene and other semimetals, and further discuss the opportunities created by topological effects, along with the additional challenges that they impose on photodetector designs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Photodetection mechanisms.
Fig. 2: Semiconductor-based versus semimetal-based PDs.
Fig. 3: Topological enhancement of the shift current response in Weyl semimetals.
Fig. 4: Opportunities in semimetal-based photodetection.

Similar content being viewed by others

References

  1. Rogalski, A. Progress in focal plane array technologies. Prog. Quant. Electron. 36, 342–473 (2012).

    Google Scholar 

  2. Rogalski, A. Infrared detectors: status and trends. Prog. Quant. Electron. 27, 59–210 (2003).

    CAS  Google Scholar 

  3. Sizov, F. Terahertz radiation detectors: the state-of-the-art. Semicond. Sci. Technol. 33, 123001 (2018).

    Google Scholar 

  4. Norton, P. HgCdTe infrared detectors. Opto-Electron. Rev. 10, 159–174 (2002).

    CAS  Google Scholar 

  5. Konstantatos, G. Current status and technological prospect of photodetectors based on two-dimensional materials. Nat. Commun. 9, 5266 (2018).

    CAS  Google Scholar 

  6. Richards, P. L. Bolometers for infrared and millimeter waves. J. Appl. Phys. 76, 1–24 (1994).

    CAS  Google Scholar 

  7. Graf, A., Arndt, M., Sauer, M. & Gerlach, G. Review of micromachined thermopiles for infrared detection. Meas. Sci. Technol. 18, 59–75 (2007).

    Google Scholar 

  8. Sherr, R. Scintillation counter for the detection of α-particles. Rev. Sci. Instrum. 18, 767–770 (1947).

    CAS  Google Scholar 

  9. Ahmadi, M., Wu, T. & Hu, B. A review on organic–inorganic halide perovskite photodetectors: device engineering and fundamental physics. Adv. Mater. 29, 1605242 (2017).

    Google Scholar 

  10. Chen, H., Liu, H., Zhang, Z., Hu, K. & Fang, X. Nanostructured photodetectors: from ultraviolet to terahertz. Adv. Mater. 28, 403–433 (2016).

    Google Scholar 

  11. Barve, A. V., Lee, S. J., Noh, S. K. & Krishna, S. Review of current progress in quantum dot infrared photodetectors. Laser Photon. Rev. 4, 738–750 (2010).

    CAS  Google Scholar 

  12. Koppens, F. H. L. et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 9, 780–793 (2014).

    CAS  Google Scholar 

  13. Xia, F., Mueller, T., Lin, Y.-M., Valdes-Garcia, A. & Avouris, P. Ultrafast graphene photodetector. Nat. Nanotechnol. 4, 839–843 (2009).

    CAS  Google Scholar 

  14. Wang, Q. et al. Ultrafast broadband photodetectors based on three-dimensional Dirac semimetal Cd3As2. Nano Lett. 17, 834–841 (2017).

    CAS  Google Scholar 

  15. Liu, C. H., Chang, Y. C., Norris, T. B. & Zhong, Z. Graphene photodetectors with ultra-broadband and high responsivity at room temperature. Nat. Nanotechnol. 9, 273–278 (2014).

    CAS  Google Scholar 

  16. Vicarelli, L. et al. Graphene field-effect transistors as room-temperature terahertz detectors. Nat. Mater. 11, 865–871 (2012).

    CAS  Google Scholar 

  17. Guo, Q. et al. Efficient electrical detection of mid-infrared graphene plasmons at room temperature. Nat. Mater. 17, 986–992 (2018).

    CAS  Google Scholar 

  18. Sun, D. et al. Ultrafast hot-carrier-dominated photocurrent in graphene. Nat. Nanotechnol. 7, 114–118 (2012).

    CAS  Google Scholar 

  19. Urich, A., Unterrainer, K. & Mueller, T. Intrinsic response time of graphene photodetectors. Nano Lett. 11, 2804–2808 (2011).

    CAS  Google Scholar 

  20. Sun, D. et al. Ultrafast relaxation of excited Dirac fermions in epitaxial graphene using optical differential transmission spectroscopy. Phys. Rev. Lett. 101, 157402 (2008).

    Google Scholar 

  21. Liu, C. H. et al. Ultrafast lateral photo-Dember effect in graphene induced by nonequilibrium hot carrier dynamics. Nano Lett. 15, 4234–4239 (2015).

    CAS  Google Scholar 

  22. Xu, X. et al. Photo-thermoelectric effect at a graphene interface junction. Nano Lett. 10, 562–566 (2010).

    CAS  Google Scholar 

  23. Johnson, J. B. Thermal agitation of electricity in conductors. Phys. Rev. 32, 97–109 (1928).

    CAS  Google Scholar 

  24. Nyquist, H. Thermal agitation of electric charge in conductors. Phys. Rev. 32, 110–113 (1928).

    CAS  Google Scholar 

  25. Malic, E., Winzer, T., Wendler, F. & Knorr, A. Review on carrier multiplication in graphene. Phys. Status Solidi B 253, 2303–2310 (2016).

    CAS  Google Scholar 

  26. Bolotin, K. I. et al. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146, 351–355 (2008).

    CAS  Google Scholar 

  27. Novoselov, K. S. et al. A roadmap for graphene. Nature 490, 192–200 (2012).

    CAS  Google Scholar 

  28. Huo, N. & Konstantatos, G. Recent progress and future prospects of 2D-based photodetectors. Adv. Mater. 30, 1801164 (2018).

    Google Scholar 

  29. Xia, F., Wang, H., Xiao, D., Dubey, M. & Ramasubramaniam, A. Two-dimensional material nanophotonics. Nat. Photon. 8, 899–907 (2014).

    CAS  Google Scholar 

  30. Wang, X., Cheng, Z., Xu, K., Tsang, H. K. & Xu, J.-B. High-responsivity graphene/silicon-heterostructure waveguide photodetectors. Nat. Photonics 7, 888–891 (2013).

    CAS  Google Scholar 

  31. Pospischil, A. et al. CMOS-compatible graphene photodetector covering all optical communication bands. Nat. Photon. 7, 892–896 (2013).

    CAS  Google Scholar 

  32. Engel, M. et al. Light–matter interaction in a microcavity-controlled graphene transistor. Nat. Commun. 3, 906 (2012).

    Google Scholar 

  33. Furchi, M. et al. Microcavity-integrated graphene photodetector. Nano Lett. 12, 2773–2777 (2012).

    CAS  Google Scholar 

  34. Liu, X. et al. Epitaxial ultrathin organic crystals on graphene for high-efficiency phototransistors. Adv. Mater. 28, 5200–5205 (2016).

    CAS  Google Scholar 

  35. Konstantatos, G. et al. Hybrid graphene-quantum dot phototransistors with ultrahigh gain. Nat. Nanotechnol. 7, 363–368 (2012).

    CAS  Google Scholar 

  36. Liu, Y. et al. Planar carbon nanotube-graphene hybrid films for high-performance broadband photodetectors. Nat. Commun. 6, 8589 (2015).

    CAS  Google Scholar 

  37. Roy, K. et al. Graphene–MoS2 hybrid structures for multifunctional photoresponsive memory devices. Nat. Nanotechnol. 8, 826–830 (2013).

    CAS  Google Scholar 

  38. An, X., Liu, F., Jung, Y. J. & Kar, S. Tunable graphene–silicon heterojunctions for ultrasensitive photodetection. Nano Lett. 13, 909–916 (2013).

    CAS  Google Scholar 

  39. Fang, Y., Armin, A., Meredith, P. & Huang, J. Accurate characterization of next-generation thin-film photodetectors. Nat. Photonics 13, 1–4 (2019).

    CAS  Google Scholar 

  40. Freitag, M., Low, T. & Avouris, P. Increased responsivity of suspended graphene photodetectors. Nano Lett. 13, 1644–1648 (2013).

    CAS  Google Scholar 

  41. Park, J., Ahn, Y. H. & Ruiz-Vargas, C. Imaging of photocurrent generation and collection in single-layer graphene. Nano Lett. 9, 1742–1746 (2009).

    CAS  Google Scholar 

  42. Plötzing, T. et al. Experimental verification of carrier multiplication in graphene. Nano Lett. 14, 5371–5375 (2014).

    Google Scholar 

  43. Tielrooij, K. J. et al. Photoexcitation cascade and multiple hot-carrier generation in graphene. Nat. Phys. 9, 248–252 (2013).

    CAS  Google Scholar 

  44. Armitage, N. P., Mele, E. J. & Vishwanath, A. Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 90, 015001 (2018).

    CAS  Google Scholar 

  45. Burkov, A. A. Topological semimetals. Nat. Mater. 15, 1145–1148 (2016).

    CAS  Google Scholar 

  46. Liu, Z. K. et al. Discovery of a three-dimensional topological Dirac semimetal, Na3Bi. Science 343, 864–867 (2014).

    CAS  Google Scholar 

  47. Xu, S.-Y. et al. Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science 349, 613–617 (2015).

    CAS  Google Scholar 

  48. Ma, J. et al. Experimental progress on layered topological semimetals. 2D Mater. 6, 032001 (2019).

    CAS  Google Scholar 

  49. Haldane, F. D. M. Nobel lecture: Topological quantum matter. Rev. Mod. Phys. 89, 040502 (2017).

    Google Scholar 

  50. Von Klitzing, K. The quantized Hall effect. Rev. Mod. Phys. 58, 519–531 (1986).

    Google Scholar 

  51. Qi, X. L. & Zhang, S. C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).

    CAS  Google Scholar 

  52. Moore, J. E. The birth of topological insulators. Nature 464, 194–198 (2010).

    CAS  Google Scholar 

  53. Hasan, M. Z. & Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    CAS  Google Scholar 

  54. Morimoto, T. & Nagaosa, N. Topological nature of nonlinear optical effects in solids. Sci. Adv. 2, e1501524 (2016).

    Google Scholar 

  55. Xiao, D., Chang, M.-C. & Niu, Q. Berry phase effects on electronic properties. Rev. Mod. Phys. 82, 1959–2007 (2010).

    CAS  Google Scholar 

  56. Patankar, S. et al. Resonance-enhanced optical nonlinearity in the Weyl semimetal TaAs. Phys. Rev. B 98, 165113 (2018).

    CAS  Google Scholar 

  57. de Juan, F., Grushin, A. G., Morimoto, T. & Moore, J. E. Quantized circular photogalvanic effect in Weyl semimetals. Nat. Commun. 8, 15995 (2017).

    Google Scholar 

  58. Chan, C.-K., Lee, P. A., Burch, K. S., Han, J. H. & Ran, Y. When chiral photons meet chiral fermions: photoinduced anomalous Hall effects in Weyl semimetals. Phys. Rev. Lett. 116, 026805 (2016).

    Google Scholar 

  59. Ishizuka, H. & Hayata, T. Ueda, M. & Nagaosa, N. Emergent electromagnetic induction and adiabatic charge pumping in noncentrosymmetric Weyl semimetals. Phys. Rev. Lett. 117, 216601 (2016).

    Google Scholar 

  60. Morimoto, T., Zhong, S., Orenstein, J. & Moore, J. E. Semiclassical theory of nonlinear magneto-optical responses with applications to topological Dirac/Weyl semimetals. Phys. Rev. B 94, 245121 (2016).

    Google Scholar 

  61. Sipe, J. E. & Shkrebtii, A. I. Second-order optical response in semiconductors. Phys. Rev. B 61, 5337–5352 (2000).

    CAS  Google Scholar 

  62. Ma, J. et al. Nonlinear photoresponse of type-II Weyl semimetals. Nat. Mater. 18, 476–481 (2019).

    CAS  Google Scholar 

  63. Osterhoudt, G. B. et al. Colossal mid-infrared bulk photovoltaic effect in a type-I Weyl semimetal. Nat. Mater. 18, 471–475 (2019).

    CAS  Google Scholar 

  64. Vergniory, M. G. et al. A complete catalogue of high-quality topological materials. Nature 566, 480–485 (2019).

    CAS  Google Scholar 

  65. Tang, F., Po, H. C., Vishwanath, A. & Wan, X. Comprehensive search for topological materials using symmetry indicators. Nature 566, 486–489 (2019).

    CAS  Google Scholar 

  66. Zhang, T. et al. Catalogue of topological electronic materials. Nature 566, 475–479 (2019).

    CAS  Google Scholar 

  67. Burkov, A. A. & Balents, L. Weyl semimetal in a topological insulator multilayer. Phys. Rev. Lett. 107, 127205 (2011).

    CAS  Google Scholar 

  68. Rao, Z. et al. Observation of unconventional chiral fermions with long Fermi arcs in CoSi. Nature 567, 496–499 (2019).

    CAS  Google Scholar 

  69. Tang, P., Zhou, Q. & Zhang, S. C. Multiple types of topological fermions in transition metal silicides. Phys. Rev. Lett. 119, 206402 (2017).

    Google Scholar 

  70. Jia, S., Xu, S.-Y. & Hasan, M. Z. Weyl semimetals, Fermi arcs and chiral anomalies. Nat. Mater. 15, 1140–1144 (2016).

    CAS  Google Scholar 

  71. Yang, X., Burch, K. & Ran, Y. Divergent bulk photovoltaic effect in Weyl semimetals. Preprint at https://arxiv.org/abs/1712.09363 (2017).

  72. Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    CAS  Google Scholar 

  73. Meric, I. et al. Graphene field-effect transistor based on boron nitride gate dielectrics. In 2010 International Electron Devices Meeting 23.2.1–23.2.4 (IEEE, 2010).

  74. Roushan, P. et al. Topological surface states protected from backscattering by chiral spin texture. Nature 460, 1106–1109 (2009).

    CAS  Google Scholar 

  75. Morimoto, T., Nakamura, M., Kawasaki, M. & Nagaosa, N. Current–voltage characteristic and shot noise of shift current photovoltaics. Phys. Rev. Lett. 121, 267401 (2018).

    CAS  Google Scholar 

  76. Mueller, T., Xia, F. & Avouris, P. Graphene photodetectors for high-speed optical communications. Nat. Photon. 4, 297–301 (2010).

    CAS  Google Scholar 

  77. Fu, L. & Kane, C. L. Superconducting proximity effect and majorana fermions at the surface of a topological insulator. Phys. Rev. Lett. 100, 096407 (2008).

    Google Scholar 

  78. Chang, C.-Z. et al. Zero-field dissipationless chiral edge transport and the nature of dissipation in the quantum anomalous hall state. Phys. Rev. Lett. 115, 057206 (2015).

    Google Scholar 

  79. Chang, C.-Z. et al. Experimental observation of the quantum anomalous hall effect in a magnetic topological insulator. Science 340, 167–170 (2013).

    CAS  Google Scholar 

  80. Wang, Q. et al. Robust edge photocurrent response on layered type II Weyl semimetal WTe2. Nat. Commun. 10, 5736 (2019).

    CAS  Google Scholar 

  81. Ma, Q. et al. Direct optical detection of Weyl fermion chirality in a topological semimetal. Nat. Phys. 13, 842–847 (2017).

    CAS  Google Scholar 

  82. Wang, H. et al. IR microbolometer with self-supporting structure operating at room temperature. Infrared Phys. Technol. 45, 53–57 (2004).

    CAS  Google Scholar 

  83. García, M., Ambrosio, R., Torres, A. & Kosarev, A. IR bolometers based on amorphous silicon germanium alloys. J. Non-Cryst. Solids 338–340, 744–748 (2004).

    Google Scholar 

  84. Semenov, A. D., Gol’tsman, G. N. & Sobolewski, R. Hot-electron effect in superconductors and its applications for radiation sensors. Supercond. Sci. Technol. 15, R1 (2002).

    CAS  Google Scholar 

  85. Li, H. et al. Negative magnetoresistance in Dirac semimetal Cd3As2. Nat. Commun. 7, 10301 (2016).

    CAS  Google Scholar 

Download references

Acknowledgements

D.S. acknowledges support from the Beijing Natural Science Foundation (grant no. JQ19001) and National Natural Science Foundation of China (NSFC grant nos. 91750109, 11674013). D.X. acknowledges support from the US Department of Energy, Basic Energy Sciences grant no. DE-SC0012509. F.X. acknowledges support by a US National Science Foundation CAREER award. F.J.G.A. acknowledges support from the Spanish MINECO (MAT2017-88492-R, SEV2015-0522) and ERC (advanced grant no. 789104-eNANO). J.L. acknowledges financial support by National Key R&D Program (2018YFA0307200) and the 111 Project (no. B07014).

Author information

Authors and Affiliations

Authors

Contributions

D.S. proposed the paper scheme and coordinated the work. All authors contributed to writing the manuscript.

Corresponding author

Correspondence to Dong Sun.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Xia, F., Xiao, D. et al. Semimetals for high-performance photodetection. Nat. Mater. 19, 830–837 (2020). https://doi.org/10.1038/s41563-020-0715-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-020-0715-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing