Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Completing the picture through correlative characterization

Abstract

Natural and manufactured materials rely on complex hierarchical microstructures to deliver a suite of interesting properties. To predict and tailor their performance requires a joined-up knowledge of their multiphase microstructure, interfaces, chemistry and crystallography from the nanoscale to the macroscale. This Perspective reflects on how recent developments in correlative characterization can bring together multiple image modalities and maps of the local chemistry, structure and functionality to form rich multimodal and multiscale correlated datasets. The automated collection and digitization of multidimensional data is an essential part of the picture for developing multiscale modelling and ‘big data’-driven machine learning approaches. These are needed to both improve our understanding of existing materials and exploit high-throughput combinatorial synthesis, processing and testing methods to develop materials with bespoke properties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A plethora of techniques can provide morphological, chemical, crystallographic or performance data across a range of length scales.
Fig. 2: Schematics illustrating different data acquisition approaches.
Fig. 3: Advanced correlative workflows for understanding the corrosion of sub-sea pipeline steel under saline conditions.
Fig. 4: Alignment between physical systems and their digital counterparts.
Fig. 5: Processing–microstructure–performance cycle for materials innovation and improvement.

Similar content being viewed by others

References

  1. Ando, T. et al. The 2018 correlative microscopy techniques roadmap. J. Phys. D 51, 443001 (2018).

    Article  Google Scholar 

  2. Sankaran, K. K. & Mishra, R. S. in Metallurgy and Design of Alloys with Hierarchical Microstructures (eds Sankaran, K. K. & Mishra, R. S.) 21–41 (Elsevier, 2017).

  3. Liu, Y. M. & Zhang, X. Metamaterials: a new frontier of science and technology. Chem. Soc. Rev. 40, 2494–2507 (2011).

    Article  CAS  Google Scholar 

  4. Zimmermann, E. A., Barth, H. D. & Ritchie, R. O. The multiscale origins of fracture resistance in human bone and its biological degradation. JOM 64, 486–493 (2012).

    Article  CAS  Google Scholar 

  5. Daly, M. et al. A multi-scale correlative investigation of ductile fracture. Acta Mater. 130, 56–68 (2017).

    Article  CAS  Google Scholar 

  6. Starborg, T. et al. Experimental steering of electron microscopy studies using prior X-ray computed tomography. Ultramicroscopy 201, 58–67 (2019).

    Article  CAS  Google Scholar 

  7. Overwijk, M. H. F., Vandenheuvel, F. C. & Bullelieuwma, C. W. T. Novel scheme for the preparation of transmission electron-microscopy specimens with a focused ion-beam. J. Vac. Sci. Technol. B 11, 2021–2024 (1993).

    Article  CAS  Google Scholar 

  8. Echlin, M. P., Mottura, A., Torbet, C. J. & Pollock, T. M. A new TriBeam system for three-dimensional multimodal materials analysis. Rev. Sci. Instr. 83, 023701 (2012).

    Article  Google Scholar 

  9. Jiruše, J. et al. Combined plasma FIB-SEM. Microsc. Microanal. 18, 652–653 (2012).

    Article  Google Scholar 

  10. Burnett, T. L. et al. Large volume serial sectioning tomography by Xe plasma FIB dual beam microscopy. Ultramicroscopy 161, 119–129 (2016).

    Article  CAS  Google Scholar 

  11. Hayworth, K. J. et al. Imaging ATUM ultrathin section libraries with WaferMapper: A multi-scale approach to EM reconstruction of neural circuits. Front. Neural Circ. 8, 68 (2014).

    Google Scholar 

  12. Eberle, A. L., Selchow, O., Thaler, M., Zeidler, D. & Kirmse, R. Mission (im)possible – mapping the brain becomes a reality. Microscopy 64, 45–55 (2015).

    Article  Google Scholar 

  13. Xue, D. et al. Accelerated search for materials with targeted properties by adaptive design. Nat. Commun. 7, 11241 (2016).

    Article  CAS  Google Scholar 

  14. Shu, X. et al. A genetically encoded tag for correlated light and electron microscopy of intact cells, tissues, and organisms. PLoS Biology 9, e1001041 (2011).

    Article  CAS  Google Scholar 

  15. de Boer, P., Hoogenboom, J. P. & Giepmans, B. N. G. Correlated light and electron microscopy: ultrastructure lights up! Nat. Meth. 12, 503–513 (2015).

    Article  Google Scholar 

  16. Herbig, M. et al. Atomic-scale quantification of grain boundary segregation in nanocrystalline material. Phys. Rev. Lett. 112, 126103 (2014).

    Article  CAS  Google Scholar 

  17. Robertson, I. M. et al. Towards an integrated materials characterization toolbox. J. Mater. Res. 26, 1341–1383 (2011).

    Article  CAS  Google Scholar 

  18. Judenhofer, M. S. et al. Simultaneous PET-MRI: a new approach for functional and morphological imaging. Nat. Med. 14, 459–465 (2008).

    Article  CAS  Google Scholar 

  19. McDonald, S. A. et al. Microstructural evolution during sintering of copper particles studied by laboratory diffraction contrast tomography (LabDCT). Sci. Rep. 7, 5251 (2017).

    Article  CAS  Google Scholar 

  20. Winiarski, B. et al. Broad ion beam serial section tomography. Ultramicroscopy 172, 52–64 (2017).

    Article  CAS  Google Scholar 

  21. Karnowski, K. et al. Optical coherence microscopy as a novel, non-invasive method for the 4D live imaging of early mammalian embryos. Sci. Rep. 7, 4165 (2017).

    Article  Google Scholar 

  22. Garcea, S. C., Wang, Y. & Withers, P. J. X-ray computed tomography of polymer composites. Compos. Sci. Technol. 156, 305–319 (2018).

    Article  CAS  Google Scholar 

  23. Withers, P. J. & Preuss, M. Fatigue and damage in structural materials studied by x-ray tomography. Annu. Rev. Mater. Res. 42, 81–103 (2012).

    Article  CAS  Google Scholar 

  24. Robinson, J. B. et al. Non-uniform temperature distribution in Li-ion batteries during discharge – a combined thermal imaging, X-ray micro-tomography and electrochemical impedance approach. J. Power Sources 252, 51–57 (2014).

    Article  CAS  Google Scholar 

  25. Bay, B. K., Smith, T. S., Fyhrie, D. P. & Saad, M. Digital volume correlation: three-dimensional strain mapping using X-ray tomography. Exp. Mech. 39, 217–226 (1999).

    Article  Google Scholar 

  26. Franck, C., Hong, S., Maskarinec, S. A., Tirrell, D. A. & Ravichandran, G. Three-dimensional full-field measurements of large deformations in soft materials using confocal microscopy and digital volume correlation. Exp. Mech. 47, 427–438 (2007).

    Article  Google Scholar 

  27. Eastwood, D. S. et al. Lithiation induced dilation mapping in a Li-ion battery electrode by 3D X-ray microscopy and digital volume correlation. Adv. Energy Mater. 4, 1300506 (2014).

    Article  Google Scholar 

  28. Jones, R. H. & Simonen, E. P. Early stages in the development of stress-corrosion cracks. Mater. Sci. Eng. A 176, 211–218 (1994).

    Article  CAS  Google Scholar 

  29. Turnbull, A., McCartney, L. N. & Zhou, S. A model to predict the evolution of pitting corrosion and the pit-to-crack transition incorporating statistically distributed input parameters. Corros. Sci. 48, 2084–2105 (2006).

    Article  CAS  Google Scholar 

  30. Tammas-Williams, S., Withers, P. J., Todd, I. & Prangnell, P. B. The influence of porosity on fatigue crack initiation in additively manufactured titanium components. Sci. Rep. 7, 7308 (2017).

    Article  CAS  Google Scholar 

  31. Burnett, T. L. et al. The role of crack branching in stress corrosion cracking of aluminium alloys. Corros. Rev. 33, 443–454 (2015).

    Article  CAS  Google Scholar 

  32. Horner, D. A., Connolly, B. J., Zhou, S., Crocker, L. & Turnbull, A. Novel images of the evolution of stress corrosion cracks from corrosion pits. Corros. Sci. 53, 3466–3485 (2011).

    Article  CAS  Google Scholar 

  33. Stannard, T., BaleJeff, H., Merkle, A., Lauridsen, E. & Chawla, N. in 3rd International Conference on Tomography of Materials and Structures (ICTMS, 2017).

  34. Handschuh, S., Baeumler, N., Schwaha, T. & Ruthensteiner, B. A correlative approach for combining microCT, light and transmission electron microscopy in a single 3D scenario. Front. Zool. 10, 44 (2013).

    Article  Google Scholar 

  35. Paul-Gilloteaux, P. et al. eC-CLEM: flexible multidimensional registration software for correlative microscopies. Nat. Meth. 14, 102–103 (2017).

    Article  CAS  Google Scholar 

  36. Fuentes-Pacheco, J., Ruiz-Ascencio, J. & Rendon-Mancha, J. M. Visual simultaneous localization and mapping: a survey. Artif. Intell. Rev. 43, 55–81 (2015).

    Article  Google Scholar 

  37. Slater, T. J. A. et al. Correlating catalytic activity of Ag-Au nanoparticles with 3D compositional variations. Nano Lett. 14, 1921–1926 (2014).

    Article  CAS  Google Scholar 

  38. Jacques, S. D. M. et al. A laboratory system for element specific hyperspectral X-ray imaging. Analyst 138, 755–759 (2013).

    Article  CAS  Google Scholar 

  39. Cumpson, P. J., Fletcher, I. W., Sano, N. & Barlow, A. J. Rapid multivariate analysis of 3D ToF-SIMS data: graphical processor units (GPUs) and low-discrepancy subsampling for large-scale principal component analysis. Surf. Interface Anal. 48, 1328–1336 (2016).

    Article  CAS  Google Scholar 

  40. Fu, X. et al. Non-destructive mapping of grains in three dimensions. Scr. Mater. 49, 1093–1096 (2003).

    Article  CAS  Google Scholar 

  41. Calcagnotto, M., Ponge, D., Demir, E. & Raabe, D. Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD. Mater. Sci. Eng. A 527, 2738–2746 (2010).

    Article  Google Scholar 

  42. Kelly, M. N., Glowinski, K., Nuhfer, N. T. & Rohrer, G. S. The five parameter grain boundary character distribution of alpha-Ti determined from three-dimensional orientation data. Acta Mater. 111, 22–30 (2016).

    Article  CAS  Google Scholar 

  43. Toda, H. et al. In situ observation of ductile fracture using X-ray tomography technique. Acta Mater. 59, 1995–2008 (2011).

    Article  CAS  Google Scholar 

  44. Liao, H. G. et al. Facet development during platinum nanocube growth. Science 345, 916–919 (2014).

    Article  CAS  Google Scholar 

  45. Groeber, M. A. & Jackson, M. A. DREAM.3D: A digital representation environment for the analysis of microstructure in 3D. Integr. Mater. Manuf. Innov. 3, 5 (2014).

    Article  Google Scholar 

  46. Yeratapally, S. R., Glavicic, M. G., Hardy, M. & Sangid, M. D. Microstructure based fatigue life prediction framework for polycrystalline nickel-base superalloys with emphasis on the role played by twin boundaries in crack initiation. Acta Mater. 107, 152–167 (2016).

    Article  CAS  Google Scholar 

  47. Kalinin, S. V., Sumpter, B. G. & Archibald, R. K. Big-deep-smart data in imaging for guiding materials design. Nature Materials 14, 973–980 (2015).

    Article  CAS  Google Scholar 

  48. Young, T. J. et al. The use of the PeakForce quantitative nanomechanical mapping AFM-based method for high-resolution Young’s modulus measurement of polymers. Meas. Sci. Technol. 22, 125703 (2011).

    Article  Google Scholar 

  49. Reichardt, A. et al. In situ micro tensile testing of He+2 ion irradiated and implanted single crystal nickel film. Acta Mater. 100, 147–154 (2015).

    Article  CAS  Google Scholar 

  50. Gianola, D. S. & Eberl, C. Micro- and nanoscale tensile testing of materials. JOM 61, 24 (2009).

    Article  Google Scholar 

  51. Meirer, F. et al. Three-dimensional imaging of chemical phase transformations at the nanoscale with full-field transmission X-ray microscopy. J. Synchrotron. Radiat. 18, 773–781 (2011).

    Article  CAS  Google Scholar 

  52. Allison, J., Backman, D. & Christodoulou, L. Integrated computational materials engineering: a new paradigm for the global materials profession. JOM 58, 25–27 (2006).

    Article  Google Scholar 

  53. Glaessgen, E. H. & Stargel, D. S. in 53rd Structures, Structural Dynamics, and Materials Conference (AIAA, 2012).

  54. Council, N. R. Integrated Computational Materials Engineering: A Transformational Discipline for Improved Competitiveness and National Security (The National Academies Press, 2008).

  55. Jain, A. et al. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013).

    Article  Google Scholar 

  56. Christodoulou, J. A. Integrated computational materials engineering and materials genome initiative: accelerating materials innovation. Adv. Mater. Proc. 171, 28–31 (2013).

    Google Scholar 

  57. Panchal, J. H., Kalidindi, S. R. & McDowell, D. L. Key computational modeling issues in integrated computational materials engineering. Comput. Aided Des. 45, 4–25 (2013).

    Article  Google Scholar 

  58. Ramakrishna, S. et al. Materials informatics. J. Intell. Manuf. https://doi.org/10.1007/s10845-018-1392-0 (2018).

    Article  Google Scholar 

  59. Agrawal, A. & Choudhary, A. Perspective: materials informatics and big data: realization of the “fourth paradigm” of science in materials science. APL Mater. 4, 053208 (2016).

    Article  Google Scholar 

  60. Takeuchi, I., Lauterbach, J. & Fasolka, M. J. Combinatorial materials synthesis. Mater. Today 8, 18–26 (2005). October.

    Article  CAS  Google Scholar 

  61. Alberi, K. et al. The 2019 materials by design roadmap. J. Phys. D 52, 1 (2019).

    Article  Google Scholar 

  62. Springer, H. & Raabe, D. Rapid alloy prototyping: compositional and thermo-mechanical high throughput bulk combinatorial design of structural materials based on the example of 30Mn–1.2C–xAl triplex steels. Acta Mater. 60, 4950–4959 (2012).

    Article  CAS  Google Scholar 

  63. Hardwick, D. & Williams, W. M. The birth of metallography – the work of Henry Clifton Sorby (1826–1908). Bull. Canad. Instit. Mining Metallurgy 73, 143–144 (1980).

    Google Scholar 

  64. Wodo, O., Broderick, S. & Rajan, K. Microstructural informatics for accelerating the discovery of processing-microstructure-property relationships. MRS Bull. 41, 603–609 (2016).

    Article  Google Scholar 

  65. Schmitz, G. J. et al. Towards a metadata scheme for the description of materials – the description of microstructures. Sci. Technol. Adv. Mater. 17, 410–430 (2016).

    Article  CAS  Google Scholar 

  66. DeCost, B. L. & Holm, E. A. A computer vision approach for automated analysis and classification of microstructural image data. Comput. Mater. Sci. 110, 126–133 (2015).

    Article  Google Scholar 

  67. McDowell, D. L. & LeSar, R. A. The need for microstructure informatics in process-structure-property relations. MRS Bull. 41, 587–593 (2016).

    Article  Google Scholar 

  68. Kalidindi, S. R. Hierarchical Materials Informatics (Butterworth-Heinemann, 2015).

  69. Speed, J. The Theatre of the Empire of Great Britain, Presenting An Exact Geography Of England, Scotland, Ireland, Etc.: Together with a Prospect of the Most Famous Parts of the World (Bassett & Chiswell, 1676).

  70. Ogilby, J. Britannia Depicta: Or, Ogilby Improv’d. Being an Actual Survey of All the Direct and Principal Cross Roads in England and Wales (Bowles, 1764).

  71. Burnett, T. L. et al. Correlative tomography. Sci. Rep. 4, 4711 (2014).

    Article  CAS  Google Scholar 

  72. Arnoux, G. et al. Power handling of the JET ITER-like wall. Physica Scripta 2014, 014009 (2014).

    Article  Google Scholar 

  73. Leonard, K. J., Gussev, M. N., Stevens, J. N. & Busby, J. T. Analysis of stress corrosion cracking in alloy 718 following commercial reactor exposure. J. Nucl. Mater. 466, 443–459 (2015).

    Article  CAS  Google Scholar 

  74. Chimi, Y. et al. Correlation between locally deformed structure and oxide film properties in austenitic stainless steel irradiated with neutrons. J. Nucl. Mater. 475, 71–80 (2016).

    Article  CAS  Google Scholar 

  75. Griffiths, M. A review of microstructure evolution in zirconium alloys during irradiation. J. Nucl. Mater. 159, 190–218 (1988).

    Article  CAS  Google Scholar 

  76. Dagan, M. et al. Imaging of radiation damage using complementary field ion microscopy and atom probe tomography. Ultramicroscopy 159, 387–394 (2015).

    Article  CAS  Google Scholar 

  77. Gilbert, M. R. et al. Neutron-induced dpa, transmutations, gas production, and helium embrittlement of fusion materials. J. Nucl. Mater. 442, S755–S760 (2013).

    Article  CAS  Google Scholar 

  78. Marrow, T. J. et al. Three dimensional observations and modelling of intergranular stress corrosion cracking in austenitic stainless steel. J. Nucl. Mater. 352, 62–74 (2006).

    Article  CAS  Google Scholar 

  79. Patra, A. & McDowell, D. L. Crystal plasticity investigation of the microstructural factors influencing dislocation channeling in a model irradiated bcc material. Acta Mater. 110, 364–376 (2016).

    Article  CAS  Google Scholar 

  80. Lehtinen, A., Laurson, L., Granberg, F., Nordlund, K. & Alava, M. J. Effects of precipitates and dislocation loops on the yield stress of irradiated iron. Sci. Rep. 8, 6914 (2018).

    Article  Google Scholar 

  81. Marian, J. et al. Recent advances in modeling and simulation of the exposure and response of tungsten to fusion energy conditions. Nucl. Fusion 57, 9 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

P.J.W. is grateful to the European Research Council for funding COREL-CT under grant no. 695638. We are grateful for the funding to set up the Henry Moseley X-ray Imaging Facility within the Henry Royce Institute (GR EP/R00661X/1). The Henry Moseley X-ray Imaging Facility was established with funding from the Engineering and Physical Sciences Research Council through grants EP/F007906/1, EP/F001452/1 and EP/I02249X/1. We thank C. Parker for his help on illustrating Figs. 2 and 4. We would also like to thank the Centre of Heritage Imaging and Collection Care and the John Rylands Library at the University of Manchester for their help providing material for Fig. 2.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to the preparation of this manuscript.

Corresponding author

Correspondence to P. J. Withers.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burnett, T.L., Withers, P.J. Completing the picture through correlative characterization. Nat. Mater. 18, 1041–1049 (2019). https://doi.org/10.1038/s41563-019-0402-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-019-0402-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing