Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A conductive topological insulator with large spin Hall effect for ultralow power spin–orbit torque switching

Abstract

Spin–orbit torque switching using the spin Hall effect in heavy metals and topological insulators has a great potential for ultralow power magnetoresistive random-access memory. To be competitive with conventional spin-transfer torque switching, a pure spin current source with a large spin Hall angle (θSH > 1) and high electrical conductivity (σ > 105 Ω−1 m−1) is required. Here we demonstrate such a pure spin current source: conductive topological insulator BiSb thin films with σ ≈ 2.5 × 105 Ω−1 m−1, θSH ≈ 52 and spin Hall conductivity σSH ≈ 1.3 × 107\(\frac{\hbar }{{2e}}\)Ω−1 m−1 at room temperature. We show that BiSb thin films can generate a very large spin–orbit field of 2.3 kOe MA–1 cm2 and a critical switching current density as low as 1.5 MA cm–2 in Bi0.9Sb0.1/MnGa bilayers, which underlines the potential of BiSb for industrial applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structure, magnetic properties and SOT effect in the Bi0.9Sb0.1(10 nm)/Mn0.6Ga0.4(3 nm) bilayer with perfect PMA.
Fig. 2: Magnetic properties and SOT effect in the Bi0.9Sb0.1(10 nm)/Mn0.45Ga0.55(3 nm) bilayer with tilting magnetization.
Fig. 3: Room-temperature current-induced magnetization switching in the Bi0.9Sb0.1(5 nm)/Mn0.45Ga0.55(3 nm) bilayer.

Similar content being viewed by others

References

  1. Slonczewski, J. C. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Matter 159, L1–L7 (1996).

    Article  Google Scholar 

  2. Chang, M.-T., Rosenfeld, P., Lu, S.-L. & Jacob, B. Technology comparison for large last-level caches (L3Cs): low-leakage SRAM, low write-energy STT-RAM, and refresh-optimized eDRAM. In 2013 IEEE Proc. 19th Int. Symp. High Performance Computer Architecture (HPCA) 143–154 (IEEE, 2013).

  3. Kato, Y., Myers, R. C., Gossard, A. C. & Awschalom, D. D. Observation of the spin Hall effect in semiconductors. Science 306, 1910–1913 (2004).

    Article  Google Scholar 

  4. Wunderlich, Kaestner, J. B., Sinova, J. & Jungwirth, T. Experimental observation of the spin-Hall effect in a two-dimensional spin–orbit coupled semiconductor system. Phys. Rev. Lett. 94, 047204 (2005).

    Article  Google Scholar 

  5. Miron, I. M. et al. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 476, 189–193 (2011).

    Article  Google Scholar 

  6. Liu, L. et al. Spin-torque switching with the giant spin Hall effect of tantalum. Science 336, 555–558 (2012).

    Article  Google Scholar 

  7. Liu, L., Lee, O. J., Gudmundsen, T. J., Ralph, D. C. & Buhrmam, R. A. Current-induced switching of perpendicularly magnetized magnetic layers using spin torque from the spin Hall effect. Phys. Rev. Lett. 109, 096602 (2012).

    Article  Google Scholar 

  8. Hao, Q. & Xiao, G. Giant spin Hall effect and switching induced by spin-transfer torque in a W/Co40Fe40B20/MgO structure with perpendicular magnetic anisotropy. Phys. Rev. Appl. 3, 034009 (2015).

    Article  Google Scholar 

  9. Melnik, A. R. et al. Spin-transfer torque generated by a topological insulator. Nature 511, 449–451 (2014).

    Article  Google Scholar 

  10. Fan, Y. et al. Magnetisation switching through giant spin–orbit torque in a magnetically doped topological insulator heterostructure. Nat. Mater. 13, 699–704 (2014).

    Article  Google Scholar 

  11. DC, M. et al. Room-temperature perpendicular magnetization switching through giant spin–orbit torque from sputtered BixSe(1–x) topological insulator material. Nat. Mater. https://doi.org/10.1038/s41563-018-0136-z (2018).

  12. Teo, J. C. Y., Fu, L. & Kane, C. L. Surface states and topological invariants in three-dimensional topological insulators: application to Bi1–xSbx. Phys. Rev. B 78, 045426 (2008).

    Article  Google Scholar 

  13. Hsieh, D. et al. A topological Dirac insulator in a quantum spin Hall phase. Nature 452, 970–974 (2008).

    Article  Google Scholar 

  14. Hirahara, T. et al. Topological metal at surface of an ultrathin Bi1–xSbx alloy film. Phys. Rev. B 81, 165422 (2010).

    Article  Google Scholar 

  15. Nishide, A. et al. Direct mapping of the spin-filtered surface bands of a three-dimensional quantum spin Hall insulator. Phys. Rev. B 81, 041309(R) (2010).

    Article  Google Scholar 

  16. Taskin, A. A. & Ando, Y. Quantum oscillations in a topological insulator Bi1–xSbx. Phys. Rev. B 80, 085303 (2009).

    Article  Google Scholar 

  17. Taskin, A. A., Segawa, K. & Ando, Y. Oscillatory angular dependence of the magnetoresistance in a topological insulator Bi1–xSbx. Phys. Rev. B 82, 121302(R) (2010).

    Article  Google Scholar 

  18. Ueda, Y., Khang, N. H. D., Yao, K. & Hai, P. N. Epitaxial growth and characterization of Bi1–xSbx spin Hall thin films on GaAs(111)A substrates. Appl. Phys. Lett. 110, 062401 (2017).

    Article  Google Scholar 

  19. Zhu, L. J., Nie, S. H. & Zhao, J. H. Recent progress in perpendicularly magnetized Mn-based binary alloy films. Chin. Phys. B 22, 118505 (2013).

    Article  Google Scholar 

  20. Bruno, P., Dugaev, V. K. & Taillefumieret, M. Topological Hall effect and Berry phase in magnetic nanostructures. Phys. Rev. Lett. 93, 096806 (2004).

    Article  Google Scholar 

  21. Yasuda, K. et al. Geometric Hall effects in topological insulator heterostructures. Nat. Phys. 12, 555–559 (2016).

    Article  Google Scholar 

  22. Ludbrook, B. M., Dubuis, G., Puichaud, A.-H., Ruck, B. J. & Granville, S. Nucleation and annihilation of skyrmions in Mn2CoAl observed through the topological Hall effect. Sci. Rep. 7, 13620 (2017).

    Article  Google Scholar 

  23. Scharf, B., Matos-Abiague, A., Han, J. E., Hankiewicz, E. M. & Žutić, I. Tunneling planar Hall effect in topological insulators: spin valves and amplifiers. Phys. Rev. Lett. 117, 166806 (2016).

    Article  Google Scholar 

  24. Li, P. et al. Spin–orbit torque-assisted switching in magnetic insulator thin films with perpendicular magnetic anisotropy. Nat. Commun. 7, 12688 (2015).

    Article  Google Scholar 

  25. Kawaguchi, M. et al. Current-induced effective fields detected by magnetotransport measurements. Appl. Phys. Exp. 6, 113002 (2013).

    Article  Google Scholar 

  26. Meng, K. K. et al. Modulated switching current density and spin–orbit torques in MnGa/Ta films with inserting ferromagnetic layers. Sci. Rep. 6, 38375 (2016).

    Article  Google Scholar 

  27. Meng, K. K. et al. Anomalous Hall effect and spin–orbit torques in MnGa/IrMn films: modification from strong spin Hall effect of the antiferromagnet. Phys. Rev. B 94, 214413 (2016).

    Article  Google Scholar 

  28. Ranjbar, R., Suzuki, K. Z., Sasaki, Y., Bainsla, L. & Mizukami, S. Current-induced spin–orbit torque magnetisation switching in a MnGa/Pt film with a perpendicular magnetic anisotropy. Jpn J. Appl. Phys. 55, 120302 (2016).

    Article  Google Scholar 

  29. Pai, C.-F. et al. Spin transfer torque devices utilizing the giant spin Hall effect of tungsten. Appl. Phys. Lett. 101, 122404 (2012).

    Article  Google Scholar 

  30. Liu, L., Moriyama, T., Ralph, D. C. & Buhrman, R. A. Spin-torque ferromagnetic resonance induced by the spin Hall effect. Phys. Rev. Lett. 106, 036601 (2011).

    Article  Google Scholar 

  31. Han, J. et al. Room temperature spin–orbit torque switching induced by a topological insulator. Phys. Rev. Lett. 119, 077702 (2017).

    Article  Google Scholar 

  32. Wang, Y. et al. Room temperature magnetization switching in topological insulator–ferromagnet heterostructures by spin–orbit torques. Nat. Commun. 8, 1364 (2017).

    Article  Google Scholar 

  33. Sahin, C. & Flatté, M. E. Tunable giant spin Hall conductivities in a strong spin–orbit semimetal: Bi1–xSbx. Phys. Rev. Lett. 114, 107201 (2015).

    Article  Google Scholar 

  34. Zhu, X.-G. et al. Three Dirac points on the (110) surface of the topological insulator Bi1−xSbx. New J. Phys. 15, 103011 (2013).

    Article  Google Scholar 

  35. Kane, C. L. & Mele, E. J. Quantum spin Hall effect in graphene. Phys. Rev. Lett. 95, 226801 (2005).

    Article  Google Scholar 

  36. Bernevig, B. A., Hughes, T. L. & Zhang, S.-C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 314, 1757–1761 (2006).

    Article  Google Scholar 

  37. König, M. et al. Quantum spin Hall insulator state in HgTe quantum wells. Science 318, 766–770 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by Grant-in-Aid for Challenging Exploratory Research (no. 16K14228), and Nanotechnology platform 12025014 (F-17-IT-0011) from MEXT. The authors thank H. Iida and R. C. Roca for their help in X-ray diffraction and superconducting quantum interference device measurements. We also thank the Material Analysis Division and Laboratory for Future Interdisciplinary Research of Science and Technology at the Tokyo Institute of Technology, and M. Tanaka Laboratory at the University of Tokyo for their technical supports.

Author information

Authors and Affiliations

Authors

Contributions

N.H.D.K. grew the BiSb/MnGa bilayers, fabricated the Hall devices and performed the measurements on the bilayers; Y.U. grew and evaluated the conductivity of various BiSb layers; P.N.H. planned the experiments; N.H.D.K. and P.N.H. analysed the data and wrote the manuscript.

Corresponding author

Correspondence to Pham Nam Hai.

Ethics declarations

Competing interests

The authors have filed a patent application for using BiSb as the spin current source in SOT-MRAM.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–10, Supplementary Table 1, Supplementary Notes 1–6

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khang, N.H.D., Ueda, Y. & Hai, P.N. A conductive topological insulator with large spin Hall effect for ultralow power spin–orbit torque switching. Nature Mater 17, 808–813 (2018). https://doi.org/10.1038/s41563-018-0137-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-018-0137-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing