Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Near-synchronous Northern Hemisphere and Patagonian Ice Sheet variation over the last glacial cycle

Abstract

Northern Hemisphere insolation intensity is roughly in phase with Southern Hemisphere climate proxies, leading to a common conclusion that northern insolation forces southern climate during the Late Quaternary. However, mid-latitude Southern Hemisphere records place the advance of Patagonian and New Zealand glaciers before the Last Glacial Maximum (29,000–18,000 years ago) by several millennia. To resolve the cause(s) of nearly synchronous global climate change requires continuous archives of mid-latitude glacial activity for the last glacial cycle. Here we assess the position of the Patagonian Ice Sheet’s marine-terminating margin over the last ~89,000 years using a sedimentary-beryllium-isotope record from the Chilean margin to track the proximity of local glaciers. We find that glaciations and deglaciations are synchronous with or precede Northern Hemisphere ice sheets by thousands of years. Glacial expansion was driven by equatorward migration and strengthening of the southern westerly winds, linked to global cooling and a steeper meridional temperature gradient. Glacial terminations occurred when global warming coincided with increasing obliquity and dramatic Northern Hemisphere cooling. Our results suggest that, on orbital timescales, a complex interaction between mean global climate, obliquity and interhemispheric teleconnections could have led to near-synchronous global ice sheet evolution through displacements of the southern westerlies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Location of the study area.
Fig. 2: Proxy data from Site J1002.
Fig. 3: Proxy records from the South Pacific covering the LGP.
Fig. 4: The relationship between PIS extent and three modes of SWWs change.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available as four tables via Zenodo at https://doi.org/10.5281/zenodo.10608111 (ref. 87). The geological materials used in this study are archived at the Lamont-Doherty Core Repository (https://corerepository.ldeo.columbia.edu/). For guidance in requesting samples, contact S.C.B. (sbova@sdsu.edu) before submitting a request.

References

  1. Imbrie, J. et al. On the structure and origin of major glaciation cycles 1. Linear responses to Milankovitch forcing. Paleoceanography 7, 701–738 (1992).

    Google Scholar 

  2. Kawamura, K. et al. Northern Hemisphere forcing of climatic cycles in Antarctica over the past 360,000 years. Nature 448, 912–916 (2007).

    CAS  Google Scholar 

  3. Petit, J.-R. et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399, 429–436 (1999).

    CAS  Google Scholar 

  4. Imbrie, J. et al. On the structure and origin of major glaciation cycles 2. The 100,000‐year cycle. Paleoceanography 8, 699–735 (1993).

    Google Scholar 

  5. Barrows, T. T., Juggins, S., De Deckker, P., Calvo, E. & Pelejero, C. Long-term sea surface temperature and climate change in the Australian–New Zealand region. Paleoceanography 22, PA2215 (2007).

    Google Scholar 

  6. Vandergoes, M. J. et al. Regional insolation forcing of late Quaternary climate change in the Southern Hemisphere. Nature 436, 242–245 (2005).

    CAS  Google Scholar 

  7. Boex, J. et al. Rapid thinning of the late Pleistocene Patagonian Ice Sheet followed migration of the Southern Westerlies. Sci. Rep. 3, 2118 (2013).

    CAS  Google Scholar 

  8. Bendle, J. M., Palmer, A. P., Thorndycraft, V. R. & Matthews, I. P. Phased Patagonian Ice Sheet response to Southern Hemisphere atmospheric and oceanic warming between 18 and 17 ka. Sci. Rep. 9, 4133 (2019).

    Google Scholar 

  9. Davies, B. J. et al. The evolution of the Patagonian Ice Sheet from 35 ka to the present day (PATICE). Earth Sci. Rev. 204, 103152 (2020).

    Google Scholar 

  10. Huybers, P. & Denton, G. Antarctic temperature at orbital timescales controlled by local summer duration. Nat. Geosci. 1, 787–792 (2008).

    CAS  Google Scholar 

  11. Huybers, P. Combined obliquity and precession pacing of late Pleistocene deglaciations. Nature 480, 229–232 (2011).

    CAS  Google Scholar 

  12. Fogwill, C., Turney, C., Hutchinson, D., Taschetto, A. & England, M. Obliquity control on southern hemisphere climate during the last glacial. Sci. Rep. 5, 11673 (2015).

    CAS  Google Scholar 

  13. Putnam, A. E. et al. The last glacial maximum at 44°S documented by a 10Be moraine chronology at Lake Ohau, Southern Alps of New Zealand. Quat. Sci. Rev. 62, 114–141 (2013).

    Google Scholar 

  14. Denton, G. H. et al. The Zealandia Switch: ice age climate shifts viewed from Southern Hemisphere moraines. Quat. Sci. Rev. 257, 106771 (2021).

    Google Scholar 

  15. von Blanckenburg, F., Bouchez, J., Ibarra, D. E. & Maher, K. Stable runoff and weathering fluxes into the oceans over Quaternary climate cycles. Nat. Geosci. 8, 538–542 (2015).

    Google Scholar 

  16. von Blanckenburg, F., Bouchez, J. & Wittmann, H. Earth surface erosion and weathering from the 10Be (meteoric)/9Be ratio. Earth Planet. Sci. Lett. 351, 295–305 (2012).

    Google Scholar 

  17. von Blanckenburg, F. & Bouchez, J. River fluxes to the sea from the oceanʼs 10Be/9Be ratio. Earth Planet. Sci. Lett. 387, 34–43 (2014).

    Google Scholar 

  18. Wittmann, H., von Blanckenburg, F., Mohtadi, M., Christl, M. & Bernhardt, A. The competition between coastal trace metal fluxes and oceanic mixing from the 10Be/9Be ratio: implications for sedimentary records. Geophys. Res. Lett. 44, 8443–8452 (2017).

    CAS  Google Scholar 

  19. Yokoyama, Y. et al. Widespread collapse of the Ross Ice Shelf during the late Holocene. Proc. Natl Acad. Sci. USA 113, 2354 (2016).

    CAS  Google Scholar 

  20. Sproson, A. D., Yokoyama, Y., Miyairi, Y., Aze, T. & Totten, R. L. Holocene melting of the West Antarctic Ice Sheet driven by tropical Pacific warming. Nat. Commun. 13, 2434 (2022).

    CAS  Google Scholar 

  21. White, D. A. et al. Beryllium isotope signatures of ice shelves and sub-ice shelf circulation. Earth Planet. Sci. Lett. 505, 86–95 (2019).

    CAS  Google Scholar 

  22. Bova, S., Rosenthal, Y. & Childress, L. Digging deeper with the JR100: extending high resolution paleoclimate records from the Chilean Margin to the Eemian. Zenodo https://doi.org/10.5281/zenodo.5553428 (2019).

  23. Simon, Q. et al. Authigenic 10Be/9Be ratio signatures of the cosmogenic nuclide production linked to geomagnetic dipole moment variation since the Brunhes/Matuyama boundary. J. Geophys. Res. Solid Earth 121, 7716–7741 (2016).

    CAS  Google Scholar 

  24. Lamy, F. et al. Antarctic timing of surface water changes off Chile and Patagonian ice sheet response. Science 304, 1959–1962 (2004).

    CAS  Google Scholar 

  25. Kaiser, J., Lamy, F., Arz, H. W. & Hebbeln, D. Dynamics of the millennial-scale sea surface temperature and Patagonian Ice Sheet fluctuations in southern Chile during the last 70 kyr (ODP Site 1233). Quat. Int. 161, 77–89 (2007).

    Google Scholar 

  26. Siani, G. et al. Late Glacial to Holocene terrigenous sediment record in the Northern Patagonian margin: paleoclimate implications. Palaeogeogr. Palaeoclimatol. Palaeoecol. 297, 26–36 (2010).

    Google Scholar 

  27. Young, G. M. & Nesbitt, H. W. Processes controlling the distribution of Ti and Al in weathering profiles, siliciclastic sediments and sedimentary rocks. J. Sediment. Res. 68, 448–455 (1998).

    CAS  Google Scholar 

  28. Li, C. et al. The sediment green–blue color ratio as a proxy for biogenic silica productivity along the Chilean Margin. Geochem. Geophys. Geosyst. 23, e2022GC010350 (2022).

    CAS  Google Scholar 

  29. Villaseñor, T., Tentori, D., Marsaglia, K. M. & Pinto, L. The changing Patagonian landscape: erosion and westward sediment transfer paths in northern Patagonia during the Middle and Late Pleistocene. Basin Res. 32, 1035–1053 (2020).

    Google Scholar 

  30. Buizert, C. et al. Abrupt ice-age shifts in southern westerly winds and Antarctic climate forced from the north. Nature 563, 681–685 (2018).

    CAS  Google Scholar 

  31. Darvill, C. M., Bentley, M. J., Stokes, C. R. & Shulmeister, J. The timing and cause of glacial advances in the southern mid-latitudes during the last glacial cycle based on a synthesis of exposure ages from Patagonia and New Zealand. Quat. Sci. Rev. 149, 200–214 (2016).

    Google Scholar 

  32. Ho, S. L. et al. Sea surface temperature variability in the Pacific sector of the Southern Ocean over the past 700 kyr. Paleoceanography 27, PA4202 (2012).

    Google Scholar 

  33. Kaiser, J., Lamy, F. & Hebbeln, D. A 70-kyr sea surface temperature record off southern Chile (Ocean Drilling Program Site 1233). Paleoceanography 20, PA4009 (2005).

    Google Scholar 

  34. Sikes, E. et al. Southern Ocean seasonal temperature and Subtropical Front movement on the South Tasman Rise in the late Quaternary. Paleoceanography 24, PA2201 (2009).

    Google Scholar 

  35. Lamy, F. et al. Precession modulation of the South Pacific westerly wind belt over the past million years. Proc. Natl Acad. Sci. USA 116, 23455–23460 (2019).

    CAS  Google Scholar 

  36. Cuffey, K. M. et al. Deglacial temperature history of West Antarctica. Proc. Natl Acad. Sci. USA 113, 14249–14254 (2016).

    CAS  Google Scholar 

  37. Herman, F. & Brandon, M. Mid-latitude glacial erosion hotspot related to equatorial shifts in southern westerlies. Geology 43, 987–990 (2015).

    Google Scholar 

  38. Ai, X. E. et al. Southern Ocean upwelling, Earth’s obliquity, and glacial-interglacial atmospheric CO2 change. Science 370, 1348–1352 (2020).

    CAS  Google Scholar 

  39. Toggweiler, J. R., Russell, J. L. & Carson, S. R. Midlatitude westerlies, atmospheric, 21, PA 2005, CO2, and climate change during the ice ages. Paleoceanography https://doi.org/10.1029/2005PA001154 (2006).

  40. Lu, J., Chen, G. & Frierson, D. M. The position of the midlatitude storm track and eddy-driven westerlies in aquaplanet AGCMs. J. Atmos. Sci. 67, 3984–4000 (2010).

    Google Scholar 

  41. Timmermann, A. et al. Modeling obliquity and CO2 effects on Southern Hemisphere climate during the past 408 ka. J. Clim. 27, 1863–1875 (2014).

    Google Scholar 

  42. Vimeux, F., Cuffey, K. M. & Jouzel, J. New insights into Southern Hemisphere temperature changes from Vostok ice cores using deuterium excess correction. Earth Planet. Sci. Lett. 203, 829–843 (2002).

    CAS  Google Scholar 

  43. Schaefer, J. M. et al. The southern glacial maximum 65,000 years ago and its unfinished termination. Quat. Sci. Rev. 114, 52–60 (2015).

    Google Scholar 

  44. Mercer, J. H. Simultaneous climatic change in both hemispheres and similar bipolar interglacial warming: evidence and implications. Clim. Process. Clim. Sensit. 29, 307–313 (1984).

    Google Scholar 

  45. Data from: GEBCO 2020 Grid. GEBCO Compilation Group https://doi.org/10.5285/a29c5465-b138-234d-e053-6c86abc040b9 (2020).

  46. Gouretski, V. & Koltermann, K. WOCE Global Hydrographic Climatology. Ber. des BSH 35, 1–52 (2004).

    Google Scholar 

  47. Schlitzer, R. Ocean data view. Ocean Data View https://odv.awi.de/ (2022).

  48. Nelson, C. S., Cooke, P. J., Hendy, C. H. & Cuthbertson, A. M. Oceanographic and climatic changes over the past 160,000 years at Deep Sea Drilling Project Site 594 off southeastern New Zealand, southwest Pacific Ocean. Paleoceanography 8, 435–458 (1993).

    Google Scholar 

  49. Shakun, J. D., Lea, D. W., Lisiecki, L. E. & Raymo, M. E. An 800-kyr record of global surface ocean δ18O and implications for ice volume–temperature coupling. Earth Planet. Sci. Lett. 426, 58–68 (2015).

    CAS  Google Scholar 

  50. Lisiecki, L. E. & Stern, J. V. Regional and global benthic δ18O stacks for the last glacial cycle. Paleoceanography 31, 1368–1394 (2016).

    Google Scholar 

  51. Lee, T., Rand, D., Lisiecki, L. E., Gebbie, G. & Lawrence, C. E. Bayesian age models and stacks: combining age inferences from radiocarbon and benthic δ18O stratigraphic alignment. Clim. Past 19, 1993–2012 (2023).

    Google Scholar 

  52. Siani, G. et al. Carbon isotope records reveal precise timing of enhanced Southern Ocean upwelling during the last deglaciation. Nat. Commun. 4, 2758 (2013).

    Google Scholar 

  53. Heaton, T. J. et al. Marine20—the marine radiocarbon age calibration curve (0–55,000 cal BP). Radiocarbon 62, 779–820 (2020).

    CAS  Google Scholar 

  54. Reimer, R. W. & Reimer, P. J. An online application for ΔR calculation. Radiocarbon 59, 1623–1627 (2017).

    CAS  Google Scholar 

  55. Lisiecki, L. E. & Raymo, M. E. A Pliocene–Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, PA1003 (2005).

    Google Scholar 

  56. Sproson, A. D. et al. Beryllium isotopes in sediments from Lake Maruwan Oike and Lake Skallen, east Antarctica, reveal substantial glacial discharge during the late Holocene. Quat. Sci. Rev. 256, 106841 (2021).

    Google Scholar 

  57. Sproson, A. D., Aze, T., Behrens, B. & Yokoyama, Y. Initial measurement of beryllium‐9 using high‐resolution inductively coupled plasma mass spectrometry allows for more precise applications of the beryllium isotope system within the Earth Sciences. Rapid Commun. Mass Spectrom. 35, e9059 (2021).

    CAS  Google Scholar 

  58. Kohl, C. & Nishiizumi, K. Chemical isolation of quartz for measurement of in-situ-produced cosmogenic nuclides. Geochim. Cosmochim. Acta 56, 3583–3587 (1992).

    CAS  Google Scholar 

  59. Bourles, D., Raisbeck, G. M. & Yiou, F. 10Be and 9Be in marine sediments and their potential for dating. Geochim. Cosmochim. Acta 53, 443–452 (1989).

    CAS  Google Scholar 

  60. Yokoyama, Y. et al. In-situ and meteoric 10Be and 26Al measurements: improved preparation and application at the University of Tokyo. Nucl. Instrum. Methods Phys. Res. Sect. B 455, 260–264 (2019).

    CAS  Google Scholar 

  61. Matsuzaki, H. et al. Multi-nuclide AMS performances at MALT. Nucl. Instrum. Methods Phys. Res. Sect. B 259, 36–40 (2007).

    CAS  Google Scholar 

  62. Chmeleff, J., von Blanckenburg, F., Kossert, K. & Jakob, D. Determination of the 10Be half-life by multicollector ICP-MS and liquid scintillation counting. Nucl. Instrum. Methods Phys. Res. Sect. B 268, 192–199 (2010).

    CAS  Google Scholar 

  63. Korschinek, G. et al. A new value for the half-life of 10Be by heavy-ion elastic recoil detection and liquid scintillation counting. Nucl. Instrum. Methods Phys. Res. Sect. B 268, 187–191 (2010).

    CAS  Google Scholar 

  64. Korte, M., Constable, C., Donadini, F. & Holme, R. Reconstructing the Holocene geomagnetic field. Earth Planet. Sci. Lett. 312, 497–505 (2011).

    CAS  Google Scholar 

  65. Christl, M., Lippold, J., Steinhilber, F., Bernsdorff, F. & Mangini, A. Reconstruction of global 10Be production over the past 250 ka from highly accumulating Atlantic drift sediments. Quat. Sci. Rev. 29, 2663–2672 (2010).

    Google Scholar 

  66. Dunlea, A. G. et al. Intercomparison of XRF core scanning results from seven labs and approaches to practical calibration. Geochem. Geophys. Geosyst. 21, e2020GC009248 (2020).

    Google Scholar 

  67. Gottschalk, J. et al. Carbon isotope offsets between benthic foraminifer species of the genus Cibicides (Cibicidoides) in the glacial sub‐Antarctic Atlantic. Paleoceanography 31, 1583–1602 (2016).

    Google Scholar 

  68. Kusakabe, M. et al. Distribution of 10Be and 9Be in the Pacific Ocean. Earth Planet. Sci. Lett. 82, 231–240 (1987).

    CAS  Google Scholar 

  69. Kusakabe, M., Ku, T.-L. & Southon, J. R. Beryllium isotopes in the ocean. Geochem. J. 24, 263–272 (1990).

    CAS  Google Scholar 

  70. Lao, Y. et al. Transport and burial rates of 10Be and 231Pa in the Pacific Ocean during the Holocene period. Earth Planet. Sci. Lett. 113, 173–189 (1992).

    CAS  Google Scholar 

  71. Bostock, H. C. et al. A review of the Australian–New Zealand sector of the Southern Ocean over the last 30 ka (Aus-INTIMATE project). Quat. Sci. Rev. 74, 35–57 (2013).

    Google Scholar 

  72. Bostock, H. C., Opdyke, B. N. & Williams, M. J. Characterising the intermediate depth waters of the Pacific Ocean using δ13C and other geochemical tracers. Deep Sea Res. Part I 57, 847–859 (2010).

    CAS  Google Scholar 

  73. Haddam, N., Michel, E., Siani, G., Licari, L. & Dewilde, F. Ventilation and expansion of intermediate and deep waters in the southeast pacific during the last termination. Paleoceanogr. Paleoclimatology. 35, e2019PA003743 (2020).

    Google Scholar 

  74. Lamy, F., Hebbeln, D., Röhl, U. & Wefer, G. Holocene rainfall variability in southern Chile: a marine record of latitudinal shifts of the Southern Westerlies. Earth Planet. Sci. Lett. 185, 369–382 (2001).

    CAS  Google Scholar 

  75. Denton, G. H. et al. Geomorphology, stratigraphy, and radiocarbon chronology of Llanquihue Drift in the area of the Southern Lake District, Seno Reloncaví, and Isla Grande de Chiloé, Chile. Geogr. Ann. Ser. A 81, 167–229 (1999).

    Google Scholar 

  76. Yokoyama, Y. et al. Rapid glaciation and a two-step sea level plunge into the Last Glacial Maximum. Nature 559, 603–607 (2018).

    CAS  Google Scholar 

  77. Lambeck, K., Rouby, H., Purcell, A., Sun, Y. & Sambridge, M. Sea level and global ice volumes from the Last Glacial Maximum to the Holocene. Proc. Natl Acad. Sci. USA 111, 15296–15303 (2014).

    CAS  Google Scholar 

  78. Kaplan, M. R., Ackert, R. P. Jr, Singer, B. S., Douglass, D. C. & Kurz, M. D. Cosmogenic nuclide chronology of millennial-scale glacial advances during O-isotope stage 2 in Patagonia. Geol. Soc. Am. Bull. 116, 308–321 (2004).

    CAS  Google Scholar 

  79. Douglass, D., Singer, B., Kaplan, M., Mickelson, D. & Caffee, M. Cosmogenic nuclide surface exposure dating of boulders on last-glacial and late-glacial moraines, Lago Buenos Aires, Argentina: interpretive strategies and paleoclimate implications. Quat. Geochronol. 1, 43–58 (2006).

    Google Scholar 

  80. Hein, A. S. et al. The chronology of the Last Glacial Maximum and deglacial events in central Argentine Patagonia. Quat. Sci. Rev. 29, 1212–1227 (2010).

    Google Scholar 

  81. Hein, A. S. et al. Middle Pleistocene glaciation in Patagonia dated by cosmogenic-nuclide measurements on outwash gravels. Earth Planet. Sci. Lett. 286, 184–197 (2009).

    CAS  Google Scholar 

  82. Hein, A. S. et al. Regional mid-Pleistocene glaciation in central Patagonia. Quat. Sci. Rev. 164, 77–94 (2017).

    Google Scholar 

  83. Mendelová, M., Hein, A. S., Rodés, Á. & Xu, S. Extensive mountain glaciation in central Patagonia during Marine Isotope Stage 5. Quat. Sci. Rev. 227, 105996 (2020).

    Google Scholar 

  84. Sagredo, E. A. et al. Trans-Pacific glacial response to the Antarctic Cold Reversal in the southern mid-latitudes. Quat. Sci. Rev. 188, 160–166 (2018).

    Google Scholar 

  85. Nimick, D. A., McGrath, D., Mahan, S. A., Friesen, B. A. & Leidich, J. Latest pleistocene and Holocene glacial events in the Colonia Valley, Northern Patagonia Icefield, southern Chile. J. Quat. Sci. 31, 551–564 (2016).

    Google Scholar 

  86. Glasser, N. F., Harrison, S., Schnabel, C., Fabel, D. & Jansson, K. N. Younger Dryas and early Holocene age glacier advances in Patagonia. Quat. Sci. Rev. 58, 7–17 (2012).

    Google Scholar 

  87. Sproson, A. et al. JR100 Expedition 379T Site J1002 beryllium isotope, XRF element count and carbon isotope data sets. Zenodo https://doi.org/10.5281/zenodo.10608111 (2024).

Download references

Acknowledgements

We thank H. Matsuzaki (University of Tokyo) and members of MALT for their assistance with accelerator mass spectrometer measurements. We thank F. von Blanckenburg for assistance with the 10Be palaeo-production correction. We acknowledge postdoctoral fellowships (P18791 to A.D.S.) and grants (20H00193 and 23KK0013 to Y.Y.; 18F18791 to Y.Y. and A.D.S.) from the Japan Society for the Promotion of Science. We acknowledge grants from the National Science Foundation (OCE 1756241 to S.C.B. and Y.R.).

Author information

Authors and Affiliations

Authors

Consortia

Contributions

A.D.S., Y.Y., S.C.B. and Y.R. designed the study. A.D.S. carried out the age-model determination and beryllium isotope analysis, prepared the figures and wrote the initial manuscript. Y.M. and T.A. assisted with 10Be and 9Be measurements, respectively. V.J.C. and H.R. conducted the XRF analysis. V.J.C. conducted the benthic carbon isotope analysis. A.D.S., Y.Y., S.C.B. and Y.R. acquired funding to support this study. Y.Y. provided supervision. S.C.B., Y.R. and L.B.C. organized and managed the expedition. The Expedition 379T science party contributed to the collection and generation of shipboard data. All named authors contributed to the interpretation of data and revisions of the manuscript.

Corresponding author

Correspondence to Adam D. Sproson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Geoscience thanks Bethan Davies and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: James Super, in collaboration with the Nature Geoscience team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Age-depth model for Site J1002.

Age-depth model for Site J1002 based on the BIGMACS modelling routine51. (a) Age vs. depth relationship for Site J1002. Median age model and 95% confidence interval is represented by the red and dashed black lines, respectively. (b) The 95% confidence interval width vs. depth. (c) Shifted and scaled mean benthic δ18O (red stars) with 95% error bars (n = 1000, red lines) alongside mean values for the deep Pacific δ18O stack50 (black line). Blue triangles in b and c represent the position of radiocarbon ages.

Extended Data Fig. 2 Beryllium isotope record comparison.

Beryllium isotope records (mean values) from (a) Site J1002 (this study, black circles, 2σ propagated uncertainty), (b) the west equatorial Pacific Ocean (normalized data, orange, 2σ uncertainty)23 and (c) the mixed North Atlantic and Mediterranean outflow (red, 10 % uncertainty)15. (d) The relative paleo-production of 10Be converted from paleomagnetic reference records of the geomagnetic dipole moment64 prior to 10 ka and the stacked record of 10Be production65 post 10 ka following von Blanckenburg et al.15 (yellow, 1σ uncertainty). (e) The benthic oxygen isotope stack from Lisiecki and Raymo55 is presented for comparison (blue). The mean 10Be/9Be ratios from Site J1002 (dashed grey line) are presented along with values that have been corrected using the relative 10Be paleo-production record presented in d.

Extended Data Fig. 3 Benthic carbon isotope values for Site J1002.

Carbon isotope values for the benthic foraminifera, Uvigerina peregrina, from Site J1002 (Table S4) offset to DIC values by accounting for habitat effects (black circles)67. The blue and yellow boxes represent estimated values for Antarctic Intermediate Water72 (AAIW) and Pacific Deep Water/Circumpolar Deep Water71 (PDW/CDW), respectively. The inset displays the δ13C vs. 10Be/9Be relationship.

Extended Data Fig. 4 Sedimentation rates for Site J1002.

(a) Sedimentation rates (orange diamonds) and beryllium isotope ratios (black circles) for Site J1002. (b) Sedimentation rates vs. 10Be/9Be above (light orange diamonds) and below (dark orange squares) 100 m CCSF-A (core composite depth below seafloor). Relationships presented in b are significant to 95% confidence intervals.

Extended Data Fig. 5 Comparison between beryllium isotope and global sea level records.

Global Mean Sea Level (GMSL) reconstructions (blue) for the Last Glacial Maximum76 (a) and last glacial cycle77 (b) with Be isotope ratios (black circles) from Site J1002 (this study). The inset displays significant (p = <0.05) relationships between sea level and 10Be/9Be ratios. Uncertainties for median ages are 1σ (n = 1000).

Extended Data Fig. 6 Bathymetric data for offshore Chile at 46°S.

GEBCO (a) and ETOPO1 (b) bathymetric data for offshore Chile at 46°S. A rough estimate for an 80 m and 120 m decrease in sea level relative to the shelf edge are presented using grey dashed lines. The green circle represents the sampling location for Site J1002.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sproson, A.D., Yokoyama, Y., Miyairi, Y. et al. Near-synchronous Northern Hemisphere and Patagonian Ice Sheet variation over the last glacial cycle. Nat. Geosci. 17, 450–457 (2024). https://doi.org/10.1038/s41561-024-01436-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-024-01436-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing