Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Production of Neoproterozoic banded iron formations in a partially ice-covered ocean

Abstract

The meridional extent of marine ice during the Neoproterozoic snowball Earth events is debated. Banded iron formations associated with the Sturtian glaciation are considered evidence for a completely ice-covered, ferruginous ocean (hard snowball). Here, using an ocean general circulation model with thick sea glaciers and Neoproterozoic biogeochemistry, we find that circulation in a partially ice-covered ocean (soft snowball) yields iron deposition patterns similar to the observed distribution of Sturtian banded iron formations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic representation of the biogeochemical model.
Fig. 2: Results of the snowball simulation with 12° S to 12° N ice-free ocean and mean seawater phosphate concentration ([PO43−]) of 0.1 μM (3% modern).
Fig. 3: Iron deposition rates in the snowball simulation with 12° S to 12° N and 30° S to 30° N ice-free ocean; the mean seawater phosphate concentration ([PO43−]) is 0.1 μM (3% modern).

Similar content being viewed by others

Data availability

The model data and the Python script necessary to reproduce the figures presented in this study are available from the figshare repository at https://doi.org/10.6084/m9.figshare.25130783.v1 (ref. 58). The other data that have been analysed can be accessed through the links provided in the studies that have been cited.

Code availability

The simulations are carried out using the MITgcm, an open-source ocean model that can be downloaded from https://mitgcm.readthedocs.io/en/latest/overview/overview.html. The specific model configuration is available upon request.

References

  1. Bekker, A. et al. Iron formation: the sedimentary product of a complex interplay among mantle, tectonic, oceanic, and biospheric processes. Econ. Geol. 105, 467–508 (2010).

    Article  CAS  Google Scholar 

  2. Konhauser, K. O. et al. Iron formations: a global record of Neoarchaean to Palaeoproterozoic environmental history. Earth Sci. Rev. 172, 140–177 (2017).

    Article  CAS  Google Scholar 

  3. Lyons, T. W., Reinhard, C. T. & Planavsky, N. J. The rise of oxygen in Earth’s early ocean and atmosphere. Nature 506, 307–315 (2014).

    Article  CAS  Google Scholar 

  4. Kirschvink, J. L. Late Proterozoic low-latitude global glaciation: the snowball Earth. Proterozoic Biosphere 52, 51–52 (1992).

    Google Scholar 

  5. Hoffman, P. F., Kaufman, A. J., Halverson, G. P. & Schrag, D. P. A Neoproterozoic snowball Earth. Science 281, 1342–1346 (1998).

    Article  CAS  Google Scholar 

  6. Evans, D. A. D. Stratigraphic, geochronological, and paleomagnetic constraints upon the Neoproterozoic climatic paradox. Am. J. Sci. 300, 347–433 (2000).

    Article  Google Scholar 

  7. Hyde, W. T., Crowley, T. J., Baum, S. K. & Peltier, W. R. Neoproterozoic ‘snowball Earth’ simulations with a coupled climate/ice-sheet model. Nature 405, 425–429 (2000).

    Article  CAS  Google Scholar 

  8. Nelson, L. L. et al. Geochronological constraints on Neoproterozoic rifting and onset of the Marinoan glaciation from the Kingston Peak Formation in Death Valley, California (USA). Geology 48, 1083–1087 (2020).

    Article  Google Scholar 

  9. Rooney, A. D., Yang, C., Condon, D. J., Zhu, M. & Macdonald, F. A. U–Pb and Re–Os geochronology tracks stratigraphic condensation in the Sturtian snowball Earth aftermath. Geology 48, 625–629 (2020).

    Article  CAS  Google Scholar 

  10. Hoffman, P. F. et al. Snowball Earth climate dynamics and Cryogenian geology–geobiology. Sci. Adv. 3, e1600983 (2017).

    Article  Google Scholar 

  11. Abbot, D. S., Voigt, A. & Koll, D. The Jormungand global climate state and implications for Neoproterozoic glaciations. J. Geophys. Res. 116, D18103 (2011).

    Article  Google Scholar 

  12. Yang, J., Peltier, W. R. & Hu, Y. The Initiation of modern “soft snowball” and “hard snowball” climates in CCSM3. Part II: climate dynamic feedbacks. J. Clim. 25, 2737–2754 (2012).

    Article  Google Scholar 

  13. Laakso, T. A. & Schrag, D. P. Regulation of atmospheric oxygen during the Proterozoic. Earth Planet. Sci. Lett. 388, 81–91 (2014).

    Article  CAS  Google Scholar 

  14. Laakso, T. A. & Schrag, D. P. A theory of atmospheric oxygen. Geobiology 15, 366–384 (2017).

    Article  CAS  Google Scholar 

  15. Crockford, P. W. et al. Triple oxygen isotope evidence for limited mid-Proterozoic primary productivity. Nature 559, 613–616 (2018).

    Article  CAS  Google Scholar 

  16. Chan, C. S., Emerson, D. & Luther, G. W. The role of microaerophilic Fe‐oxidizing micro‐organisms in producing banded iron formations. Geobiology 14, 509–528 (2016).

    Article  CAS  Google Scholar 

  17. Song, H. et al. The onset of widespread marine red beds and the evolution of ferruginous oceans. Nat. Commun. 8, 399 (2017).

    Article  Google Scholar 

  18. Li, Z. X. et al. Assembly, configuration, and break-up history of Rodinia: a synthesis. Precambrian Res. 160, 179–210 (2008).

    Article  CAS  Google Scholar 

  19. Yang, J., Peltier, W. R. & Hu, Y. The initiation of modern soft and hard snowball Earth climates in CCSM4. Climate 8, 907–918 (2012).

    Google Scholar 

  20. Ashkenazy, Y. et al. Dynamics of a snowball Earth ocean. Nature 495, 90–93 (2013).

    Article  CAS  Google Scholar 

  21. Ashkenazy, Y., Gildor, H., Losch, M. & Tziperman, E. Ocean circulation under globally glaciated snowball earth conditions: steady-state solutions. J. Phys. Oceanogr. 44, 24–43 (2014).

    Article  Google Scholar 

  22. Ashkenazy, Y. & Tziperman, E. Variability, instabilities, and eddies in a snowball ocean. J. Clim. 29, 869–888 (2016).

    Article  Google Scholar 

  23. Lechte, M. A. et al. Subglacial meltwater supported aerobic marine habitats during snowball Earth. Proc. Natl Acad. Sci. USA 116, 25478–25483 (2019).

    Article  CAS  Google Scholar 

  24. Marshall, J., Adcroft, A., Hill, C., Perelman, L. & Heisey, C. A finite‐volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res. Oceans 102, 5753–5766 (1997).

    Article  Google Scholar 

  25. McDougall, T. J., Jackett, D. R., Wright, D. G. & Feistel, R. Accurate and computationally efficient algorithms for potential temperature and density of seawater. J. Atmos. Ocean Technol. 20, 730–741 (2003).

    Article  Google Scholar 

  26. Redi, M. H. Oceanic isopycnal mixing by coordinate rotation. J. Phys. Oceanogr. 12, 1154–1158 (1982).

    Article  Google Scholar 

  27. Gent, P. R. & Mcwilliams, J. C. Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr. 20, 150–155 (1990).

    Article  Google Scholar 

  28. Pollack, H. N., Hurter, S. J. & Johnson, J. R. Heat flow from the Earth’s interior: analysis of the global data set. Rev. Geophys. 31, 267–280 (1993).

    Article  Google Scholar 

  29. Valdes, P. J., Scotese, C. R. & Lunt, D. J. Deep ocean temperatures through time. Climate 17, 1483–1506 (2021).

    Google Scholar 

  30. Liu, Y., Peltier, W. R., Yang, J. & Vettoretti, G. The initiation of Neoproterozoic "snowball" climates in CCSM3: the influence of paleocontinental configuration. Climate 9, 2555–2577 (2013).

    Google Scholar 

  31. Zhao, Z., Liu, Y. & Dai, H. Sea-glacier retreating rate and climate evolution during the marine deglaciation of a snowball Earth. Glob. Planet. Change 215, 103877 (2022).

    Article  Google Scholar 

  32. Ashkenazy, Y. & Tziperman, E. A wind-induced thermohaline circulation hysteresis and millennial variability regimes. J. Phys. Oceanogr. 37, 2446–2457 (2007).

    Article  Google Scholar 

  33. Ashkenazy, Y. The surface temperature of Europa. Heliyon 5, e01908 (2019).

    Article  Google Scholar 

  34. Ashkenazy, Y., Sayag, R. & Tziperman, E. Dynamics of the global meridional ice flow of Europa’s icy shell. Nat. Astron. 2, 43–49 (2017).

    Article  Google Scholar 

  35. Losch, M. Modeling ice shelf cavities in a z coordinate ocean general circulation model. J. Geophys. Res. Oceans 113, C08043 (2008).

    Article  Google Scholar 

  36. McKinley, G. A., Follows, M. J. & Marshall, J. Mechanisms of air–sea CO2 flux variability in the equatorial Pacific and the North Atlantic. Glob. Biogeochem. Cycles 18, 1–14 (2004).

    Article  Google Scholar 

  37. Dutkiewicz, S., Sokolov, A. P., Scott, J. & Stone, P. H. A Three-Dimensional Ocean-Seaice-Carbon Cycle Model and Its Coupling to a Two-Dimensional Atmospheric Model: Uses in Climate Change Studies. Joint Program Report Series Report (Massachusetts Institute of Technology, 2005).

  38. MITgcm contributors. Biogeochemistry packages. MITgcm https://mitgcm.readthedocs.io/en/latest/phys_pkgs/phys_pkgs.html#biogeochemistry-packages (2019).

  39. Yamanaka, Y. & Tajika, E. Role of dissolved organic matter in the marine biogeochemical cycle: studies using an ocean biogeochemical general circulation model. Glob. Biogeochem. Cycles 11, 599–612 (1997).

    Article  CAS  Google Scholar 

  40. Martin, J. H., Knauer, G. A., Karl, D. M. & Broenkow, W. W. VERTEX: carbon cycling in the northeast Pacific. Deep Sea Res. Part A 34, 267–285 (1987).

    Article  CAS  Google Scholar 

  41. Halevy, I., Alesker, M., Schuster, E. M., Popovitz-Biro, R. & Feldman, Y. A key role for green rust in the Precambrian oceans and the genesis of iron formations. Nat. Geosci. 10, 135–139 (2017).

    Article  CAS  Google Scholar 

  42. Millero, F. J., Sotolongo, S. & Izaguirre, M. The oxidation kinetics of Fe(II) in seawater. Geochim. Cosmochim. Acta 51, 793–801 (1987).

    Article  CAS  Google Scholar 

  43. Komada, T. et al. Dissolved organic carbon dynamics in anaerobic sediments of the Santa Monica Basin. Geochim. Cosmochim. Acta 110, 253–273 (2013).

    Article  CAS  Google Scholar 

  44. Mottl, M. J. et al. Warm springs discovered on 3.5 Ma oceanic crust, eastern flank of the Juan de Fuca Ridge. Geology 26, 51 (1998).

    Article  CAS  Google Scholar 

  45. Elderfield, H. & Schultz, A. Mid-ocean ridge hydrothermal fluxes and the chemical composition of the ocean. Annu Rev. Earth Planet Sci. 24, 191–224 (1996).

    Article  CAS  Google Scholar 

  46. Halevy, I. & Bachan, A. The geologic history of seawater pH. Science 355, 1069–1071 (2017).

    Article  CAS  Google Scholar 

  47. Poulton, S. W. & Raiswell, R. The low-temperature geochemical cycle of iron: from continental fluxes to marine sediment deposition. Am. J. Sci. 302, 774–805 (2002).

    Article  CAS  Google Scholar 

  48. Wolery, T. J. & Sleep, N. H. Hydrothermal circulation and geochemical flux at mid-ocean ridges. J. Geol. 84, 249–275 (1976).

    Article  CAS  Google Scholar 

  49. Hart, R. A. A model for chemical exchange in the basalt–seawater system of oceanic layer II. Can. J. Earth Sci. 10, 799–816 (1973).

    Article  CAS  Google Scholar 

  50. Thompson, K. J. et al. Photoferrotrophy, deposition of banded iron formations, and methane production in Archean oceans. Sci. Adv. 5, eaav2869 (2019).

    Article  CAS  Google Scholar 

  51. Korenaga, J. in Archean Geodynamics and Environments (eds Benn, K. Mareschal, J.-C. & Condie, K. C.) 7–32 (American Geophysical Union, 2006).

  52. Molina, E., Martínez, M. E., Sánchez, S., García, F. & Contreras, A. Growth and biochemical composition with emphasis on the fatty acids of Tetraselmis sp. Appl. Microbiol. Biotechnol. 36, 21–25 (1991).

    Article  CAS  Google Scholar 

  53. Fábregas, J., Patiño, M., Vecino, E., Cházaro, F. & Otero, A. Productivity and biochemical composition of cyclostat cultures of the marine microalga Tetraselmis suecica. Appl. Microbiol. Biotechnol. 43, 617–621 (1995).

    Article  Google Scholar 

  54. Tahiri, M., Benider, A., Belkoura, M. & Dauta, A. Caractérisation biochimique de l’algue verte Scenedesmus abundans: influence des conditions de culture. Ann. Limnol. 36, 3–12 (2000).

    Article  Google Scholar 

  55. Viegas, C. V. et al. Algal products beyond lipids: comprehensive characterization of different products in direct saponification of green alga Chlorella sp. Algal Res. 11, 156–164 (2015).

    Article  Google Scholar 

  56. Anderson, L. A. On the hydrogen and oxygen content of marine phytoplankton. Deep Sea Res. Part I 42, 1675–1680 (1995).

    Article  CAS  Google Scholar 

  57. Sharoni, S. & Halevy, I. Geologic controls on phytoplankton elemental composition. Proc. Natl Acad. Sci. USA 119, e2113263118 (2022).

    Article  Google Scholar 

  58. Gianchandani, K. Dataset for “Production of Neoproterozoic banded iron formations in a partially ice-covered ocean” by Gianchandani et al. figshare https://doi.org/10.6084/m9.figshare.25130783.v1 (2024).

Download references

Acknowledgements

K.G., H.G. and Y.A. acknowledge the Joint National Natural Science Foundation of China, Israel Science Foundation Research Grant No. 2547/17 and the US-Israel Binational Science Foundation (BSF) Grant No. 2018152. I.H. acknowledges a Starting Grant from the European Research Council (OOID No. 755053). E.T. acknowledges NSF grant 2303486 from the P4CLIMATE programme and DOE grant DE-SC0023134. E.T. also thanks the Weizmann Institute for its hospitality during parts of this work.

Author information

Authors and Affiliations

Authors

Contributions

K.G. led the conceptualization, method development, data curation and analysis, and code development and performed the numerical simulations presented in this study. I.H., H.G., Y.A. and E.T. contributed to the conceptualization, method development, supervision and validation of the study. H.G. and Y.A. additionally contributed to project administration, resource management and funding acquisition. Y.A. additionally was involved in software development. K.G. drafted the initial manuscript, and all the authors contributed to the text and participated in the review and approval of the final manuscript.

Corresponding authors

Correspondence to Kaushal Gianchandani or Itay Halevy.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Geoscience thanks Maxwell Lechte and Lennart Ramme for their contribution to the peer review of this work. Primary Handling Editor(s): James Super, in collaboration with the Nature Geoscience team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–4, Figs. 1–11 and Tables 1–3.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gianchandani, K., Halevy, I., Gildor, H. et al. Production of Neoproterozoic banded iron formations in a partially ice-covered ocean. Nat. Geosci. 17, 298–301 (2024). https://doi.org/10.1038/s41561-024-01406-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-024-01406-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing