Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Climate-driven decoupling of wetland and upland biomass trends on the mid-Atlantic coast

Abstract

Coastal ecosystems represent a disproportionately large but vulnerable global carbon sink. Sea-level-driven tidal wetland degradation and upland forest mortality threaten coastal carbon pools, but responses of the broader coastal landscape to interacting facets of climate change remain poorly understood. Here, we use 36 years of satellite observations across the mid-Atlantic sea-level rise hotspot to show that climate change has actually increased the amount of carbon stored in the biomass of coastal ecosystems despite substantial areal loss. We find that sea-level-driven reductions in wetland and low-lying forest biomass were largely confined to areas less than 2 m above sea level, whereas the otherwise warmer and wetter climate led to an increase in the biomass of adjacent upland forests. Integrated across the entire coastal landscape, climate-driven upland greening offset sea-level-driven biomass losses, such that the net impact of climate change was to increase the amount of carbon stored in coastal vegetation. These results point to a fundamental decoupling between upland and wetland carbon trends that can only be understood by integrating observations across traditional ecosystem boundaries. This holistic approach may provide a template for quantifying carbon–climate feedbacks and other aspects of coastal change that extend beyond sea-level rise alone.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Correspondence between NDVI trend and vegetation shift in the mid-Atlantic coast of North America, a hotspot for accelerated SLR.
Fig. 2: Spatial extent of SLR impacts in coastal ecosystems.
Fig. 3: NDVI trend and the associated AGB change by vegetation type.
Fig. 4: Environmental drivers for regional patterns of NDVI trend.

Similar content being viewed by others

Data availability

All Landsat Level-1 surface reflectance images are publicly available from the United States Geological Survey EarthExplorer (https://earthexplorer.usgs.gov/) or via Google Cloud Landsat dataset (https://cloud.google.com/storage/docs/public-datasets/landsat). All field-based biomass data are detailed in refs. 25,68,69,70,71,72 and available in the Virginia Coast Reserve Long-Term Ecological Research repository (http://www.vcrlter.virginia.edu/cgi-bin/browseData.cgi). The landcover maps and the NDVI trend map are publicly available at the Environmental Data Initiative data repository (https://doi.org/10.6073/pasta/4ae5ac3fbdb6a20dcdcb2ff36487d292).

Code availability

The study does not report original code. All code used this study is available from the corresponding author upon reasonable request.

References

  1. Crowther, T. W. et al. Quantifying global soil carbon losses in response to warming. Nature 540, 104–108 (2016).

    Article  Google Scholar 

  2. Jackson, S. T. Transformational ecology and climate change. Science 373, 1085–1086 (2021).

    Article  Google Scholar 

  3. Elmendorf, S. C. et al. Plot-scale evidence of tundra vegetation change and links to recent summer warming. Nat. Clim. Change 2, 453–457 (2012).

    Article  Google Scholar 

  4. Berner, L. T. et al. Summer warming explains widespread but not uniform greening in the Arctic tundra biome. Nat. Commun. 11, 4621 (2020).

    Article  Google Scholar 

  5. Liang, E. et al. Species interactions slow warming-induced upward shifts of treelines on the Tibetan Plateau. Proc. Natl Acad. Sci. USA 113, 4380–4385 (2016).

    Article  Google Scholar 

  6. Wang, C. P., Huang, M. T. & Zhai, P. M. Change in drought conditions and its impacts on vegetation growth over the Tibetan Plateau. Adv. Clim. Change Res. https://doi.org/10.1016/j.accre.2021.04.004 (2021).

  7. Brandt, M. et al. Human population growth offsets climate-driven increase in woody vegetation in sub-Saharan Africa. Nat. Ecol. Evol. 1, 0081 (2017).

    Article  Google Scholar 

  8. Pausata, F. S. R. et al. The greening of the Sahara: past changes and future implications. One Earth 2, 235–250 (2020).

    Article  Google Scholar 

  9. Nemani, R. R. et al. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300, 1560–1563 (2003).

    Article  Google Scholar 

  10. Chen, C. et al. China and India lead in greening of the world through land-use management. Nat. Sustain. 2, 122–129 (2019).

    Article  Google Scholar 

  11. Zhang, Y., Song, C., Band, L. E., Sun, G. & Li, J. Reanalysis of global terrestrial vegetation trends from MODIS products: browning or greening? Remote Sens. Environ. 191, 145–155 (2017).

    Article  Google Scholar 

  12. Pugh, T. A. M. et al. Role of forest regrowth in global carbon sink dynamics. Proc. Natl Acad. Sci. USA 116, 4382–4387 (2019).

    Article  Google Scholar 

  13. Xu, L. et al. Changes in global terrestrial live biomass over the 21st century. Sci. Adv. 7, eabe9829 (2021).

    Article  Google Scholar 

  14. FitzGerald, D. M., Fenster, M. S., Argow, B. A. & Buynevich, I. V. Coastal impacts due to sea-level rise. Annu. Rev. Earth Planet. Sci. 36, 601–647 (2008).

    Article  Google Scholar 

  15. Kirwan, M. L. & Gedan, K. B. Sea-level driven land conversion and the formation of ghost forests. Nat. Clim. Change 9, 450–457 (2019).

    Article  Google Scholar 

  16. Kirwan, M. L. & Megonigal, J. P. Tidal wetland stability in the face of human impacts and sea-level rise. Nature 504, 53–60 (2013).

    Article  Google Scholar 

  17. McLeod, E. et al. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front. Ecol. Environ. 9, 552–560 (2011).

    Article  Google Scholar 

  18. Macreadie, P. I. et al. The future of blue carbon science. Nat. Commun. 10, 3998 (2019).

    Article  Google Scholar 

  19. Lovelock, C. E. & Reef, R. Variable impacts of climate change on blue carbon. One Earth 3, 195–211 (2020).

    Article  Google Scholar 

  20. Schepers, L., Brennand, P., Kirwan, M. L., Guntenspergen, G. R. & Temmerman, S. Coastal marsh degradation into ponds induces irreversible elevation loss relative to sea level in a microtidal system. Geophys. Res. Lett. 47, e2020GL089121 (2020).

  21. Törnqvist, T. E., Jankowski, K. L., Li, Y. & González, J. L. Tipping points of Mississippi Delta marshes due to accelerated sea-level rise. Sci. Adv. 6, eaaz5512 (2020).

    Article  Google Scholar 

  22. Herbert, E. R., Windham-Myers, L. & Kirwan, M. L. Sea-level rise enhances carbon accumulation in United States tidal wetlands. One Earth 4, 425–433 (2021).

    Article  Google Scholar 

  23. Rogers, K. et al. Wetland carbon storage controlled by millennial-scale variation in relative sea-level rise. Nature 567, 91–95 (2019).

    Article  Google Scholar 

  24. Wang, F., Lu, X., Sanders, C. J. & Tang, J. Tidal wetland resilience to sea level rise increases their carbon sequestration capacity in United States. Nat. Commun. 10, 5434 (2019).

    Article  Google Scholar 

  25. Smith, A. J. & Kirwan, M. L. Sea level‐driven marsh migration results in rapid net loss of carbon. Geophys. Res. Lett. 48, e2021GL092420 (2021).

  26. Smart, L. S. et al. Aboveground carbon loss associated with the spread of ghost forests as sea levels rise. Environ. Res. Lett. 15, 104028 (2020).

    Article  Google Scholar 

  27. Osland, M. J. et al. Beyond just sea‐level rise: considering macroclimatic drivers within coastal wetland vulnerability assessments to climate change. Glob. Change Biol. 22, 1–11 (2016).

    Article  Google Scholar 

  28. Ward, N. D. et al. Representing the function and sensitivity of coastal interfaces in Earth system models. Nat. Commun. 11, 2458 (2020).

  29. Saintilan, N. et al. Thresholds of mangrove survival under rapid sea level rise. Science 368, 1118–1121 (2020).

    Article  Google Scholar 

  30. Kirwan, M. L., Guntenspergen, G. R. & Morris, J. T. Latitudinal trends in Spartina alterniflora productivity and the response of coastal marshes to global change. Glob. Change Biol. 15, 1982–1989 (2009).

    Article  Google Scholar 

  31. Osland, M. J. et al. Climate and plant controls on soil organic matter in coastal wetlands. Glob. Change Biol. 24, 5361–5379 (2018).

    Article  Google Scholar 

  32. Schieder, N. W., Walters, D. C. & Kirwan, M. L. Massive upland to wetland conversion compensated for historical marsh loss in Chesapeake Bay, USA. Estuaries Coasts 41, 940–951 (2018).

    Article  Google Scholar 

  33. Schieder, N. W. & Kirwan, M. L. Sea-level driven acceleration in coastal forest retreat. Geology 47, 1151–1155 (2019).

    Article  Google Scholar 

  34. Ganju, N. K. et al. Spatially integrative metrics reveal hidden vulnerability of microtidal salt marshes. Nat. Commun. 8, 14156 (2017).

    Article  Google Scholar 

  35. Jankowski, K. L., Törnqvist, T. E. & Fernandes, A. M. Vulnerability of Louisiana’s coastal wetlands to present-day rates of relative sea-level rise. Nat. Commun. 8, 14792 (2017).

    Article  Google Scholar 

  36. Kauffman, J. B. et al. Total ecosystem carbon stocks at the marine-terrestrial interface: blue carbon of the Pacific northwest coast, United States. Glob. Change Biol. 26, 5679–5692 (2020).

    Article  Google Scholar 

  37. Morris, J. T., Sundareshwar, P. V., Nietch, C. T., Kjerfve, B. & Cahoon, D. R. Responses of coastal wetlands to rising sea level. Ecology 83, 2869–2877 (2002).

    Article  Google Scholar 

  38. Kirwan, M. L. & Guntenspergen, G. R. Feedbacks between inundation, root production, and shoot growth in a rapidly submerging brackish marsh. J. Ecol. 100, 764–770 (2012).

    Article  Google Scholar 

  39. Kirwan, M. L. & Mudd, S. M. Response of salt-marsh carbon accumulation to climate change. Nature 489, 550–553 (2012).

    Article  Google Scholar 

  40. Friess, D. A. et al. The state of the world’s mangrove forests: past, present, and future. Annu. Rev. Environ. Resour. 44, 89–115 (2019).

    Article  Google Scholar 

  41. Hooijer, A. & Vernimmen, R. Global LiDAR land elevation data reveal greatest sea-level rise vulnerability in the tropics. Nat. Commun. 12, 3592 (2021).

    Article  Google Scholar 

  42. Więski, K. & Pennings, S. C. Climate drivers of Spartina alterniflora saltmarsh production in Georgia, USA. Ecosystems 17, 473–484 (2014).

    Article  Google Scholar 

  43. Sallenger, A. H., Doran, K. S. & Howd, P. A. Hotspot of accelerated sea-level rise on the Atlantic coast of North America. Nat. Clim. Change 2, 884–888 (2012).

    Article  Google Scholar 

  44. Ury, E. A., Yang, X., Wright, J. P. & Bernhardt, E. S. Rapid deforestation of a coastal landscape driven by sea‐level rise and extreme events. Ecol. Appl. 31, e023391 (2021).

  45. Coldren, G. A. et al. Chronic warming stimulates growth of marsh grasses more than mangroves in a coastal wetland ecotone. Ecology 97, 3167–3175 (2016).

    Article  Google Scholar 

  46. Chen, Y., Hu, F. S. & Lara, M. J. Divergent shrub-cover responses driven by climate, wildfire, and permafrost interactions in Arctic tundra ecosystems. Glob. Change Biol. 27, 652–663 (2021).

    Article  Google Scholar 

  47. Kelly, R., Genet, H., McGuire, A. D. & Hu, F. S. Palaeodata-informed modelling of large carbon losses from recent burning of boreal forests. Nat. Clim. Change 6, 79–82 (2016).

    Article  Google Scholar 

  48. Gabler, C. A. et al. Macroclimatic change expected to transform coastal wetland ecosystems this century. Nat. Clim. Change 7, 142–147 (2017).

    Article  Google Scholar 

  49. Zhao, M. & Running, S. W. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science 329, 940–943 (2010).

    Article  Google Scholar 

  50. Krauss, K. W. et al. The role of the upper tidal estuary in wetland blue carbon storage and flux. Glob. Biogeochem. Cycles 32, 817–839 (2018).

    Article  Google Scholar 

  51. Theuerkauf, E. J., Stephens, J. D., Ridge, J. T., Fodrie, F. J. & Rodriguez, A. B. Carbon export from fringing saltmarsh shoreline erosion overwhelms carbon storage across a critical width threshold. Estuar. Coast. Shelf Sci. 164, 367–378 (2015).

    Article  Google Scholar 

  52. White, E. E., Ury, E. A., Bernhardt, E. S. & Yang, X. Climate change driving widespread loss of coastal forested wetlands throughout the North American coastal plain. Ecosystems https://doi.org/10.1007/s10021-021-00686-w (2021).

  53. Molino, G. D., Carr, J. A., Ganju, N. K. & Kirwan, M. L. Variability in marsh migration potential determined by topographic rather than anthropogenic constraints in the Chesapeake Bay region. Limnol. Oceanogr. Lett. 7, 321–331 (2022).

  54. Danielson, J. J., Poppenga, S. K., Tyler, D. J., Palaseanu-Lovejoy, M. & Gesch, D. B. Coastal National Elevation Database Fact Sheet 2018–3037 (USGS, 2018) http://pubs.er.usgs.gov/publication/fs20183037

  55. Molino, G. D., Defne, Z., Aretxabaleta, A. L., Ganju, N. K. & Carr, J. A. Quantifying slopes as a driver of forest to marsh conversion using geospatial techniques: application to Chesapeake Bay coastal-plain, United States. Front. Environ. Sci. 9 (2021).

  56. C-CAP Regional Land Cover Atlas. Data collected 1995–present. (NOAA Office for Coastal Management, Charleston, SC, 2016) https://coast.noaa.gov/digitalcoast/tools/lca.html

  57. Woodcock, C. E. et al. Free access to Landsat imagery. Science 320, 1011a (2008).

    Article  Google Scholar 

  58. Sayler, K. & Zanter, K. Earth Resources Observation and Science (EROS) Center Science Processing Architecture (ESPA) On-Demand Interface User Guide. Version 4.0. USGS (2020).

  59. O’Connell, J. L., Mishra, D. R., Cotten, D. L., Wang, L. & Alber, M. The Tidal Marsh Inundation Index (TMII): an inundation filter to flag flooded pixels and improve MODIS tidal marsh vegetation time-series analysis. Remote Sens. Environ. 201, 34–46 (2017).

    Article  Google Scholar 

  60. Campbell, A. D. & Wang, Y. Salt marsh monitoring along the mid-Atlantic coast by Google Earth Engine enabled time series. PLoS ONE 15, e0229605 (2020).

    Article  Google Scholar 

  61. Ju, J. & Masek, J. G. The vegetation greenness trend in Canada and US Alaska from 1984-2012 Landsat data. Remote Sens. Environ. 176, 1–16 (2016).

    Article  Google Scholar 

  62. Berner, L. T., Jantz, P., Tape, K. D. & Goetz, S. J. Tundra plant above-ground biomass and shrub dominance mapped across the North Slope of Alaska. Environ. Res. Lett. 13, 035002 (2018).

    Article  Google Scholar 

  63. Myers-Smith, I. H. et al. Complexity revealed in the greening of the Arctic. Nat. Clim. Change 10, 106–117 (2020).

    Article  Google Scholar 

  64. Beck, P. S. A. et al. Changes in forest productivity across Alaska consistent with biome shift. Ecol. Lett. 14, 373–379 (2011).

    Article  Google Scholar 

  65. Zoffoli, M. L. et al. Sentinel-2 remote sensing of Zostera noltei-dominated intertidal seagrass meadows. Remote Sens. Environ. 251, 112020 (2020).

    Article  Google Scholar 

  66. Byrd, K. B. et al. A remote sensing-based model of tidal marsh aboveground carbon stocks for the conterminous United States. ISPRS J. Photogramm. Remote Sens. 139, 255–271 (2018).

    Article  Google Scholar 

  67. White, E. & Kaplan, D. Identifying the effects of chronic saltwater intrusion in coastal floodplain swamps using remote sensing. Remote Sens. Environ. 258, 112385 (2021).

    Article  Google Scholar 

  68. Gillen, M. N., Messerschmidt, T. C. & Kirwan, M. L. Biophysical controls of marsh soil shear strength along an estuarine salinity gradient. Earth Surf. Dyn. 9, 413–421 (2021).

    Article  Google Scholar 

  69. Gillen, M., Messerschmidt, T. & Kirwan, M. Shear stress, biomass, bulk density, organic matter on the bank of the York River, VA. Environ. Data Initiat. (2021).

  70. Kirwan, M. L., Christian, R. R., Blum, L. K. & Brinson, M. M. On the relationship between sea level and Spartina alterniflora production. Ecosystems 15, 140–147 (2012).

    Article  Google Scholar 

  71. Smith, A., Kirwan, M. & Messerschmidt, T. Carbon stocks in forests transitioning to salt marsh at four sites in the Chesapeake Bay region, 2019. Environ. Data Initiat. (2021).

  72. Chen, Y., Messerschmidt, T., Smith, A. & Kirwan, M. Coastal forest aboveground biomass data at six sites in the Chesapeake Bay and Delaware Bay region, 2021. Environ. Data Initiat. (2022).

  73. Roy, D. P. et al. Characterization of Landsat-7 to Landsat-8 reflective wavelength and Normalized Difference Vegetation Index continuity. Remote Sens. Environ. 185, 57–70 (2016).

    Article  Google Scholar 

  74. Claverie, M., Vermote, E. F., Franch, B. & Masek, J. G. Evaluation of the Landsat-5 TM and Landsat-7 ETM+ surface reflectance products. Remote Sens. Environ. 169, 390–403 (2015).

    Article  Google Scholar 

  75. Bronaugh, D. & Werner, A. zyp: Zhang + Yue-Pilon Trends Package Version 0.10-1.1 https://cran.r-project.org/web/packages/zyp/index.html (2019).

  76. Wilcox, R. R. Fundamentals of Modern Statistical Methods: Substantially Improving Power and Accuracy 2nd edn (Springer, 2011).

  77. Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).

    Article  Google Scholar 

  78. Tian, J. et al. Development of spectral-phenological features for deep learning to understand Spartina alterniflora invasion. Remote Sens. Environ. 242, 111745 (2020).

    Article  Google Scholar 

  79. Zhang, F. & Yang, X. Improving land cover classification in an urbanized coastal area by random forests: the role of variable selection. Remote Sens. Environ. 251, 112105 (2020).

    Article  Google Scholar 

  80. Gorelick, N. et al. Google Earth Engine: planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).

    Article  Google Scholar 

  81. Liaw, A. & Wiener, M. Classification and regression by randomForest. R News 2, 18–22 (2002).

    Google Scholar 

  82. van Lierop, P., Lindquist, E., Sathyapala, S. & Franceschini, G. Global forest area disturbance from fire, insect pests, diseases and severe weather events. For. Ecol. Manag. 352, 78–88 (2015).

    Article  Google Scholar 

  83. Pekel, J.-F., Cottam, A., Gorelick, N. & Belward, A. S. High-resolution mapping of global surface water and its long-term changes. Nature 540, 418–422 (2016).

    Article  Google Scholar 

  84. Wang, X. et al. Tracking annual changes of coastal tidal flats in China during 1986–2016 through analyses of Landsat images with Google Earth Engine. Remote Sens. Environ. 238, 110987 (2020).

    Article  Google Scholar 

  85. Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).

    Article  Google Scholar 

  86. Elith, J., Leathwick, J. R. & Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 77, 802–813 (2008).

    Article  Google Scholar 

  87. La Marca, W. et al. The influence of data source and species distribution modelling method on spatial conservation priorities. Divers. Distrib. 25, 1060–1073 (2019).

    Article  Google Scholar 

  88. Liu, W. et al. Climate and geographic adaptation drive latitudinal clines in biomass of a widespread saltmarsh plant in its native and introduced ranges. Limnol. Oceanogr. 65, 1399–1409 (2020).

    Article  Google Scholar 

  89. Wiberg, P. L., Fagherazzi, S. & Kirwan, M. L. Improving predictions of salt marsh evolution through better integration of data and models. Annu. Rev. Mar. Sci. 12, 389–413 (2020).

    Article  Google Scholar 

  90. Coldren, G. A., Langley, J. A., Feller, I. C. & Chapman, S. K. Warming accelerates mangrove expansion and surface elevation gain in a subtropical wetland. J. Ecol. 107, 79–90 (2019).

    Article  Google Scholar 

  91. PRISM Climate Group, PRISM Gridded Climate Data (Oregon State Univ., 2020).

  92. Vinod, P. G. Development of topographic position index based on Jenness algorithm for precision agriculture at Kerala, India. Spat. Inf. Res. 25, 381–388 (2017).

    Article  Google Scholar 

  93. Chen, Y., Lara, M. J., Jones, B. M., Frost, G. V. & Hu, F. S. Thermokarst acceleration in Arctic tundra driven by climate change and fire disturbance. One Earth 4, 1718–1729 (2021).

    Article  Google Scholar 

  94. Wickham, J., Stehman, S. V., Sorenson, D. G., Gass, L. & Dewitz, J. A. Thematic accuracy assessment of the NLCD 2016 land cover for the conterminous United States. Remote Sens. Environ. 257, 112357 (2021).

    Article  Google Scholar 

  95. Thomas, V. A. et al. Mapping thins to identify active forest management in southern pine plantations using Landsat time series stacks. Remote Sens. Environ. 252, 112127 (2021).

    Article  Google Scholar 

  96. Chen, Y. & Kirwan, M. A phenology- and trend-based approach for accurate mapping of sea-level driven coastal forest retreat. Remote Sens. Environ. 281, 113229 (2022).

    Article  Google Scholar 

  97. Gong, P. et al. Stable classification with limited sample: transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017. Sci. Bull. 64, 370–373 (2019).

    Article  Google Scholar 

  98. Carlson, T. N. & Ripley, D. A. On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sens. Environ. 62, 241–252 (1997).

    Article  Google Scholar 

  99. Diao, C. & Wang, L. Incorporating plant phenological trajectory in exotic saltcedar detection with monthly time series of Landsat imagery. Remote Sens. Environ. 182, 60–71 (2016).

    Article  Google Scholar 

  100. Diao, C. & Wang, L. Landsat time series-based multiyear spectral angle clustering (MSAC) model to monitor the inter-annual leaf senescence of exotic saltcedar. Remote Sens. Environ. 209, 581–593 (2018).

    Article  Google Scholar 

  101. Guo, B. et al. Dynamic monitoring of soil salinization in Yellow River Delta utilizing MSAVI–SI feature space models with Landsat images. Environ. Earth Sci. 78, 308 (2019).

    Article  Google Scholar 

  102. Gitelson, A. A. & Merzlyak, M. N. Remote sensing of chlorophyll concentration in higher plant leaves. Adv. Sp. Res. 22, 689–692 (1998).

    Article  Google Scholar 

  103. Huete, A., Justice, C. & Liu, H. Development of vegetation and soil indices for MODIS-EOS. Remote Sens. Environ. 49, 224–234 (1994).

    Article  Google Scholar 

  104. Huete, A. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 25, 295–309 (1988).

    Article  Google Scholar 

  105. Qi, J., Chehbouni, A., Huete, A. R., Kerr, Y. H. & Sorooshian, S. A modified soil adjusted vegetation index. Remote Sens. Environ. 48, 119–126 (1994).

    Article  Google Scholar 

  106. McFeeters, S. K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 17, 1425–1432 (1996).

    Article  Google Scholar 

  107. Xu, H. Modification of Normalised Difference Water Index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 27, 3025–3033 (2006).

    Article  Google Scholar 

  108. Crist, E. P. & Cicone, R. C. A physically-based transformation of thematic mapper data–the TM tasseled cap. IEEE Trans. Geosci. Remote Sens. GE-22, 256–263 (1984).

    Article  Google Scholar 

  109. Baig, M. H. A., Zhang, L., Shuai, T. & Tong, Q. Derivation of a tasselled cap transformation based on Landsat 8 at-satellite reflectance. Remote Sens. Lett. 5, 423–431 (2014).

    Article  Google Scholar 

  110. Gislason, P. O., Benediktsson, J. A. & Sveinsson, J. R. Random forests for land cover classification. Pattern Recognit. Lett. 27, 294–300 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

Primary funding for this work comes from the National Science Foundation (no. 1654374, M.L.K.; no. 1832221, M.L.K; and no. 2012670, M.L.K.) with additional support from the US Department of Energy, Office of Biological and Environmental Research Program (DE-SC0021112, M.L.K.). T. Messerschmidt and A. Smith helped with field work. This is contribution 4115 of the Virginia Institute of Marine Science, William & Mary.

Author information

Authors and Affiliations

Authors

Contributions

Y.C. designed the study, performed the analysis and wrote the initial draft. M.L.K conceived the idea, contributed to the study design and revised the manuscript. Both authors interpreted the data.

Corresponding author

Correspondence to Yaping Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Geoscience thanks Marcelo Ardon, Melinda Martinez and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: James Super, in collaboration with the Nature Geoscience team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Map of the U.S. mid-Atlantic study region.

Green circles denote field sites of aboveground biomass observations. The elevation map refers to the CoNED DEM54. Map created using the Ocean Basemap in ArcGIS (v10.7).

Extended Data Fig. 2 Climate change observed in the study region.

The vertical bars represent annual mean temperature (left) and annual total precipitation (right), recorded in the nearest NOAA station in Dover, Delaware. The black lines refer to the 5-yr moving average. The dotted lines represent linear regression that show significant upward trend of long-term temperature and precipitation from 1980 onward. The observed climate data was used for illustrative purposes only. The climate inputs for our boosted regression tree analysis refers to the spatially explicit PRISM datasets.

Extended Data Fig. 3 Identifying timing for NDVI trend analysis.

a. Sites selected randomly for evaluating monthly NDVI patterns. b. Monthly NDVI pattern of each vegetation type for the most recent five years. The number of sites (n) selected for marsh, transition forest, deciduous upland forest and evergreen upland forest is respectively 4274, 3117, 3808 and 4098. The shaded areas indicate peak growing season when NDVI is maximized and stays relatively consistent. All data are shown as mean ± 1 standard deviation. The elevation data refers to the CoNED DEM54. Map created using the Ocean Basemap in ArcGIS (v10.7).

Extended Data Fig. 4 Relationship between peak growing-season NDVI and aboveground biomass.

The mean linear regression trendline is bounded by 95% confidence interval (shaded area). The solid and open symbols correspond respectively to marsh and forest. All biomass data (mean ± 1 standard deviation, n = 125) were accessed from the Long Term Ecological Research Network database indicated in Extended Data Fig. 1. The y-axis is plotted on a logarithmic scale. The regression function is (aboveground biomass) = 0.05 × e6.02 × (NDVI), (P < 0.0001, F-statistic = 378.5, and RMSE = 0.5766).

Extended Data Fig. 5 Cross-comparison of NDVI between Landsat sensors.

Scatterplots of NDVI by Landsat-5 TM (left) and by Landsat-8 OLI (right) were plotted against NDVI by Landsat-7 ETM + . The solid lines refer to linear regression and dotted lines represent the 1:1 Line superimposed for reference.

Extended Data Fig. 6 Mann-Kendall test for significant NDVI trends (P < 0.1) in the study region.

The inserted map shows all areas within 0-5 m above sea level that demonstrate statistically significant increases or decreases in NDVI during 1984 to 2020. The density plot summarizes distribution pattern of statistical results among all pixels, and the significance level at P = 0.1 is indicated by the dotted red line. The elevation map refers to the CoNED DEM54. Map created using the Ocean Basemap in ArcGIS (v10.7).

Extended Data Fig. 7 Flowchart for landcover mapping and validation.

All training and validation sites were randomly generated in ArcGIS (v10.7) within 0-5 m above sea level. The elevation data refers to the CoNED DEM54.

Extended Data Table 1 Landcover classes and their definitions used in this study94
Extended Data Table 2 Input datasets for random forest classifier95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110
Extended Data Table 3 Classification accuracy of landcover maps

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Kirwan, M.L. Climate-driven decoupling of wetland and upland biomass trends on the mid-Atlantic coast. Nat. Geosci. 15, 913–918 (2022). https://doi.org/10.1038/s41561-022-01041-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-022-01041-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing