Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An ancestral Wnt–Brachyury feedback loop in axial patterning and recruitment of mesoderm-determining target genes

Abstract

Transcription factors are crucial drivers of cellular differentiation during animal development and often share ancient evolutionary origins. The T-box transcription factor Brachyury plays a pivotal role as an early mesoderm determinant and neural repressor in vertebrates; yet, the ancestral function and key evolutionary transitions of the role of this transcription factor remain obscure. Here, we present a genome-wide target-gene screen using chromatin immunoprecipitation sequencing in the sea anemone Nematostella vectensis, an early branching non-bilaterian, and the sea urchin Strongylocentrotus purpuratus, a representative of the sister lineage of chordates. Our analysis reveals an ancestral gene regulatory feedback loop connecting Brachyury, FoxA and canonical Wnt signalling involved in axial patterning that predates the cnidarian–bilaterian split about 700 million years ago. Surprisingly, we also found that part of the gene regulatory network controlling the fate of neuromesodermal progenitors in vertebrates was already present in the common ancestor of cnidarians and bilaterians. However, while several endodermal and neuronal Brachyury target genes are ancestrally shared, hardly any of the key mesodermal downstream targets in vertebrates are found in the sea anemone or the sea urchin. Our study suggests that a limited number of target genes involved in mesoderm formation were newly acquired in the vertebrate lineage, leading to a dramatic shift in the function of this ancestral developmental regulator.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Lineages sampled in this study and Brachyury protein and mRNA expression.
Fig. 2: Distribution of Brachyury binding sites and motif analyses.
Fig. 3: Brachyury binding sites at selected target genes in Nematostella and Strongylocentrotus.
Fig. 4: Validation of Brachyury target genes.
Fig. 5: Apomorphic and synapomorphic target genes of Brachyury.
Fig. 6: Comparison of regulatory functions of Brachyury in the sea anemone, sea urchin and vertebrates.

Similar content being viewed by others

Data availability

The raw files from the ChIP–seq and RNA-seq experiments have been deposited to the NCBI GEO database under the accession numbers GSE182573 and GSE198320 for N. vectensis and S. purpuratus, respectively.

Code availability

All scripts developed for this study are available at GitHub at https://github.com/technau/brachyury_grn, https://github.com/xxxmichixxx/MouseEmbryoSingleCell and https://github.com/fmi-basel/gbuehler-MiniChip.

References

  1. Smith, J. C., Price, B. M. J., Green, J. B. A., Weigel, D. & Herrmann, B. G. Expression of a Xenopus homolog of Brachyury (T) is an immediate-early response to mesoderm induction. Cell 67, 79–87 (1991).

    Article  CAS  PubMed  Google Scholar 

  2. Cunliffe, V. & Smith, J. C. Ectopic mesoderm formation in Xenopus embryos caused by widespread expression of a Brachyury homologue. Nature 358, 427–430 (1992).

    Article  CAS  PubMed  Google Scholar 

  3. Wilson, V., Manson, L., Skarnes, W. C. & Beddington, R. S. The T gene is necessary for normal mesodermal morphogenetic cell movements during gastrulation. Development 121, 877–886 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. O’Reilly, M. A. J., Smith, J. C. & Cunliffe, V. Patterning of the mesoderm in Xenopus: dose-dependent and synergistic effects of Brachyury and Pintallavis. Development 121, 1351–1359 (1995).

    Article  PubMed  Google Scholar 

  5. Herrmann, B. G., Labeit, S., Poustka, A., King, T. R. & Lehrach, H. Cloning of the T gene required in mesoderm formation in the mouse. Nature 343, 617–622 (1990).

    Article  CAS  PubMed  Google Scholar 

  6. Kispert, A., Ortner, H., Cooke, J. & Herrmann, B. G. The chick Brachyury gene: developmental expression pattern and response to axial induction by localized activin. Dev. Biol. 168, 406–415 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Stemple, D. L. Structure and function of the notochord: an essential organ for chordate development. Development 132, 2503–2512 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Wilkinson, D. G., Bhatt, S. & Herrmann, B. G. Expression pattern of the mouse T gene and its role in mesoderm formation. Nature 343, 657–659 (1990).

    Article  CAS  PubMed  Google Scholar 

  9. Beddington, R. S., Rashbass, P. & Wilson, V. Brachyury—a gene affecting mouse gastrulation and early organogenesis. Dev. Suppl. 165, 157–165 (1992).

    Google Scholar 

  10. Stott, D., Kispert, A. & Herrmann, B. G. Rescue of the tail defect of Brachyury mice. Genes Dev. 7, 197–203 (1993).

    Article  CAS  PubMed  Google Scholar 

  11. Conlon, F. L. & Smith, J. C. Interference with Brachyury function inhibits convergent extension, causes apoptosis, and reveals separate requirements in the FGF and activin signalling pathways. Dev. Biol. 213, 85–100 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Schulte-Merker, S., van Eeden, F. J. M., Halpern, M. E., Kimmel, C. B. & Nüsslein-Volhard, C. no tail (ntl) is the zebrafish homologue of the mouse T (Brachyury) gene. Development 120, 1009–1015 (1994).

    Article  CAS  PubMed  Google Scholar 

  13. Yamaguchi, T. P., Takada, S., Yoshikawa, Y., Wu, N. & McMahon, A. P. T (Brachyury) is a direct target of Wnt3a during paraxial mesoderm specification. Genes Dev. 13, 3185–3190 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tzouanacou, E., Wegener, A., Wymeersch, F. J., Wilson, V. & Nicolas, J. F. Redefining the progression of lineage segregations during mammalian embryogenesis by clonal analysis. Dev. Cell 17, 365–376 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Wymeersch, F. J. et al. Position-dependent plasticity of distinct progenitor types in the primitive streak. eLife 5, e10042 (2016).

  16. Gouti, M. et al. A gene regulatory network balances neural and mesoderm specification during vertebrate trunk development. Dev. Cell 41, 243–261 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Davis, R. L. & Kirschner, M. W. The fate of cells in the tailbud of Xenopus laevis. Development 127, 255–267 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Gouti, M. et al. In vitro generation of neuromesodermal progenitors reveals distinct roles for wnt signalling in the specification of spinal cord and paraxial mesoderm identity. PLoS Biol. 12, e1001937 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Henrique, D., Abranches, E., Verrier, L. & Storey, K. G. Neuromesodermal progenitors and the making of the spinal cord. Development 142, 2864–2875 (2015).

    Article  CAS  PubMed  Google Scholar 

  20. Selleck, M. A. & Stern, C. D. Fate mapping and cell lineage analysis of Hensen’s node in the chick embryo. Development 112, 615–626 (1991).

    Article  CAS  PubMed  Google Scholar 

  21. Koch, F. et al. Antagonistic activities of Sox2 and Brachyury control the fate choice of neuro-mesodermal progenitors. Dev. Cell 42, 514–526 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. Mugele, D. et al. Genetic approaches in mice demonstrate that neuro-mesodermal progenitors express T/Brachyury but not Sox2. Preprint at bioRxiv https://doi.org/10.1101/503854 (2018).

  23. Takahashi, H. et al. Brachyury downstream notochord differentiation in the ascidian embryo. Genes Dev. 13, 1519–1523 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Holland, P. W. H., Koschorz, B., Holland, L. Z. & Herrmann, B. G. Conservation of Brachyury (T) genes in amphioxus and vertebrates: developmental and evolutionary implications. Development 121, 4283–4291 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Satoh, N. et al. A preliminary single-cell RNA-seq analysis of embryonic cells that express Brachyury in the amphioxus, Branchiostoma japonicum. Front. Cell Dev. Biol. 9, 696875 (2021).

  26. Technau, U. Brachyury, the blastopore and the evolution of the mesoderm. BioEssays 23, 788–794 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Croce, J. et al. Wnt6 activates endoderm in the sea urchin gene regulatory network. Development 138, 3297–3306 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Harada, Y., Yasuo, H. & Satoh, N. A sea urchin homologue of the chordate Brachyury (T) gene is expressed in the secondary mesenchyme founder cells. Development 121, 2747–2754 (1995).

    Article  CAS  PubMed  Google Scholar 

  29. Shoguchi, E., Satoh, N. & Maruyama, Y. K. Pattern of Brachyury gene expression in starfish embryos resembles that of hemichordate embryos but not of sea urchin embryos. Mech. Dev. 82, 185–189 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Croce, J., Lhomond, G. & Gache, C. Expression pattern of Brachyury in the embryo of the sea urchin Paracentrotus lividus. Dev. Genes Evol. 211, 617–619 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Annunziata, R. & Arnone, M. I. A dynamic regulatory network explains ParaHox gene control of gut patterning in the sea urchin. Development 141, 2462–2472 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Gross, J. M. & McClay, D. R. The role of Brachyury (T) during gastrulation movements in the sea urchin Lytechinus variegatus. Dev. Biol. 239, 132–147 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Arendt, D., Technau, U. & Wittbrodt, J. Evolution of the bilaterian larval foregut. Nature 409, 81–85 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Boyle, M. J., Yamaguchi, E. & Seaver, E. C. Molecular conservation of metazoan gut formation: evidence from expression of endomesoderm genes in Capitella teleta (Annelida). Evodevo 5, 39 (2014).

  35. Kin, K., Kakoi, S. & Wada, H. A novel role for dpp in the shaping of bivalve shells revealed in a conserved molluscan developmental program. Dev. Biol. 329, 152–166 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Lartillot, N., Lespinet, O., Vervoort, M. & Adoutte, A. Expression pattern of Brachyury in the mollusc Patella vulgata suggests a conserved role in the establishment of the AP axis in Bilateria. Development 129, 1411–1421 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Technau, U. & Scholz, C. B. Origin and evolution of endoderm and mesoderm. Int. J. Dev. Biol. 47, 531–539 (2003).

    PubMed  Google Scholar 

  38. Technau, U. & Bode, H. R. HyBra1, a Brachyury homologue, acts during head formation in Hydra. Development 126, 999–1010 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Technau, U. et al. Parameters of self-organization in Hydra aggregates. Proc. Natl Acad. Sci. USA 97, 12127–12131 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Scholz, C. B. & Technau, U. The ancestral role of Brachyury: expression of NemBra1 in the basal cnidarian Nematostella vectensis (Anthozoa). Dev. Genes Evol. 212, 563–570 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Servetnick, M. D. et al. Cas9-mediated excision of Nematostella Brachyury disrupts endoderm development, pharynx formation and oral–aboral patterning. Development 144, 2951–2960 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Yasuoka, Y., Shinzato, C. & Satoh, N. The mesoderm-forming gene brachyury regulates ectoderm–endoderm demarcation in the coral Acropora digitifera. Curr. Biol. 26, 2885–2892 (2016).

    Article  CAS  PubMed  Google Scholar 

  43. Marcellini, S., Technau, U., Smith, J. C. & Lemaire, P. Evolution of Brachyury proteins: identification of a novel regulatory domain conserved within Bilateria. Dev. Biol. 260, 352–361 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Bielen, H. et al. Divergent functions of two ancient Hydra Brachyury paralogues suggest specific roles for their C-terminal domains in tissue fate induction. Development 134, 4187–4197 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Schwaiger, M. et al. Evolutionary conservation of the eumetazoan gene regulatory landscape. Genome Res. 24, 639–650 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gentsch, G. E. et al. InVivo T-Box transcription factor profiling reveals joint regulation of embryonic neuromesodermal bipotency. Cell Rep. 4, 1185–1196 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Putnam, N. H. et al. Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. Science 317, 86–94 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Zimmermann, B. et al. Sea anemone genomes reveal ancestral metazoan chromosomal macrosynteny. Preprint at bioRxiv https://doi.org/10.1101/2020.10.30.359448 (2021).

  49. Grossman, S. R. et al. Positional specificity of different transcription factor classes within enhancers. Proc. Natl Acad. Sci. USA 115, E7222–E7230 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Müller, C. W. & Herrmann, B. G. Crystallographic structure of the T domain-DNA complex of the Brachyury transcription factor. Nature 389, 884–888 (1997).

    Article  PubMed  Google Scholar 

  51. Kispert, A. & Herrmann, B. G. The Brachyury gene encodes a novel DNA binding protein. EMBO J. 12, 3211–3220 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sebé-Pedrós, A. et al. The dynamic regulatory genome of capsaspora and the origin of animal multicellularity. Cell 165, 1224–1237 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Sebe-Pedros, A. et al. Early evolution of the T-box transcription factor family. Proc. Natl Acad. Sci. USA 110, 16050–16055 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Garriock, R. J. et al. Lineage tracing of neuromesodermal progenitors reveals novel wnt-dependent roles in trunk progenitor cell maintenance and differentiation. Development 142, 1628–1638 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Dermitzakis, E. T. & Clark, A. G. Evolution of transcription factor binding sites in mammalian gene regulatory regions: conservation and turnover. Mol. Biol. Evol. 19, 1114–1121 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Pijuan-Sala, B. et al. A single-cell molecular map of mouse gastrulation and early organogenesis. Nature 566, 490–495 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Grosswendt, S. et al. Epigenetic regulator function through mouse gastrulation. Nature 584, 102–108 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Tosic, J. et al. Eomes and Brachyury control pluripotency exit and germ-layer segregation by changing the chromatin state. Nat. Cell Biol. 21, 1518–1531 (2019).

    Article  CAS  PubMed  Google Scholar 

  59. Goto, H., Kimmey, S. C., Row, R. H., Matus, D. Q. & Martin, B. L. FGF and canonical Wnt signaling cooperate to induce paraxial mesoderm from tailbud neuromesodermal progenitors through regulation of a two-step epithelial to mesenchymal transition. Development 144, 1412–1421 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Martin, B. L. & Kimelman, D. Brachyury establishes the embryonic mesodermal progenitor niche. Genes Dev. 24, 2778–2783 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Davidson, E. H. et al. A provisional regulatory gene network for specification of endomesoderm in the sea urchin embryo. Dev. Biol. 246, 162–190 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. Kusserow, A. et al. Unexpected complexity of the Wnt gene family in a sea anemone. Nature 433, 156–160 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Logan, C. Y., Miller, J. R., Ferkowicz, M. J. & McClay, D. R. Nuclear beta-catenin is required to specify vegetal cell fates in the sea urchin embryo. Development 126, 345–357 (1999).

    Article  CAS  PubMed  Google Scholar 

  64. Lebedeva, T. et al. Cnidarian–bilaterian comparison reveals the ancestral regulatory logic of the β-catenin dependent axial patterning. Nat. Commun. 12, 4032 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Röttinger, E., Dahlin, P. & Martindale, M. Q. A framework for the establishment of a cnidarian gene regulatory network for ‘endomesoderm’ specification: the inputs of ß-catenin/TCF signaling. PLoS Genet. 8, e1003164 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Kirillova, A. et al. Germ-layer commitment and axis formation in sea anemone embryonic cell aggregates. Proc. Natl Acad. Sci. USA 115, 1813–1818 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Tu, Q., Brown, C. T., Davidson, E. H. & Oliveri, P. Sea urchin Forkhead gene family: phylogeny and embryonic expression. Dev. Biol. 300, 49–62 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Cui, M., Siriwon, N., Li, E., Davidson, E. H. & Peter, I. S. Specific functions of the Wnt signaling system in gene regulatory networks throughout the early sea urchin embryo. Proc. Natl Acad. Sci. USA 111, E5029–E5038 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Arenas-Mena, C., Cameron, R. A. & Davidson, E. H. Hindgut specification and cell-adhesion functions of Sphox11/13b in the endoderm of the sea urchin embryo. Dev. Growth Differ. 48, 463–472 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Peter, I. S. & Davidson, E. H. The endoderm gene regulatory network in sea urchin embryos up to mid-blastula stage. Dev. Biol. 340, 188–199 (2010).

    Article  CAS  PubMed  Google Scholar 

  71. Rizzo, F., Fernandez-Serra, M., Squarzoni, P., Archimandritis, A. & Arnone, M. I. Identification and developmental expression of the ets gene family in the sea urchin (Strongylocentrotus purpuratus). Dev. Biol. 300, 35–48 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. McClay, D. R., Miranda, E. & Feinberg, S. L. Neurogenesis in the sea urchin embryo is initiated uniquely in three domains. Development 145, dev167742 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Wikramanayake, A. H. et al. Nuclear β-catenin-dependent Wnt8 signaling in vegetal cells of the early sea urchin embryo regulates gastrulation and differentiation of endoderm and mesodermal cell lineages. Genesis 39, 194–205 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Nakanishi, N., Renfer, E., Technau, U. & Rentzsch, F. Nervous systems of the sea anemone Nematostella vectensis are generated by ectoderm and endoderm and shaped by distinct mechanisms. Development 139, 347–357 (2012).

    Article  CAS  PubMed  Google Scholar 

  75. Layden, M. J. & Martindale, M. Q. Non-canonical Notch signaling represents an ancestral mechanism to regulate neural differentiation. Evodevo 5, 30 (2014).

  76. Layden, M. J., Boekhout, M. & Martindale, M. Q. Nematostella vectensis achaete-scute homolog NvashA regulates embryonic ectodermal neurogenesis and represents an ancient component of the metazoan neural specification pathway. Development 139, 1013–1022 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Rentzsch, F., Layden, M. & Manuel, M. The cellular and molecular basis of cnidarian neurogenesis. WIREs Dev. Biol. 6, e257https://doi.org/10.1002/wdev.257 (2017).

  78. Angerer, L. M. et al. Sea urchin goosecoid function links fate specification along the animal–vegetal and oral–aboral embryonic axes. Development 128, 4393–4404 (2001).

    Article  CAS  PubMed  Google Scholar 

  79. Wei, Z., Yaguchi, J., Yaguchi, S., Angerer, R. C. & Angerer, L. M. The sea urchin animal pole domain is a Six3-dependent neurogenic patterning center. Development 136, 1179–1189 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Range, R. C. Canonical and non-canonical Wnt signaling pathways define the expression domains of Frizzled 5/8 and Frizzled 1/2/7 along the early anterior–posterior axis in sea urchin embryos. Dev. Biol. 444, 83–92 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Anishchenko, E., Arnone, M. I. & D’Aniello, S. SoxB2 in sea urchin development: implications in neurogenesis, ciliogenesis and skeletal patterning. Evodevo 9, 5 (2018).

  82. Duboc, V. et al. Nodal and BMP2/4 pattern the mesoderm and endoderm during development of the sea urchin embryo. Development 137, 223–235 (2010).

    Article  CAS  PubMed  Google Scholar 

  83. Röttinger, E. et al. FGF signals guide migration of mesenchymal cells, control skeletal morphogenesis and regulate gastrulation during sea urchin development. Development 135, 353–365 (2008).

    Article  PubMed  Google Scholar 

  84. Otim, O., Amore, G., Minokawa, T., McClay, D. R. & Davidson, E. H. SpHnf6, a transcription factor that executes multiple functions in sea urchin embryogenesis. Dev. Biol. 273, 226–243 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Satoh, N. et al. A single-cell RNA-seq analysis of Brachyury-expressing cell clusters suggests a morphogenesis-associated signal center of oral ectoderm in sea urchin embryos. Dev. Biol. 483, 128–142 (2022).

    Article  CAS  PubMed  Google Scholar 

  86. Katikala, L. et al. Functional Brachyury binding sites establish a temporal read-out of gene expression in the Ciona notochord. PLoS Biol. 11, e1001697 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kubo, A. et al. Genomic cis-regulatory networks in the early Ciona intestinalis embryo. Development 137, 1613–1623 (2010).

    Article  CAS  PubMed  Google Scholar 

  88. Khan, A. et al. JASPAR 2018: update of the open-access database of transcription factor binding profiles and its web framework. Nucleic Acids Res. 46, D260–D266 (2018).

    Article  CAS  PubMed  Google Scholar 

  89. Reeves, W. M., Wu, Y., Harder, M. J. & Veeman, M. T. Functional and evolutionary insights from the Ciona notochord transcriptome. Development 144, 3375–3387 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Chapman, D. L. & Papaioannou, V. E. Three neural tubes in mouse embryos with mutations in T-box gene Tbx6. Nature 391, 695–697 (1998).

    Article  CAS  PubMed  Google Scholar 

  91. Griffin, K. J., Amacher, S. L., Kimmel, C. B. & Kimelman, D. Molecular identification of spadetail: regulation of zebrafish trunk and tail mesoderm formation by T-box genes. Development 125, 3379–3388 (1998).

    Article  CAS  PubMed  Google Scholar 

  92. Chapman, D. L., Cooper-Morgan, A., Harrelson, Z. & Papaioannou, V. E. Critical role for Tbx6 in mesoderm specification in the mouse embryo. Mechanisms Dev. 120, 837–847 (2003).

    Article  CAS  PubMed  Google Scholar 

  93. Chapman, D. L., Agulnik, I., Hancock, S., Silver, L. M. & Papaioannou, V. E. Tbx6, a mouse T-box gene implicated in paraxial mesoderm formation at gastrulation. Dev. Biol. 180, 534–542 (1996).

    Article  CAS  PubMed  Google Scholar 

  94. Takatori, N. et al. T‐box genes in the ascidian Ciona intestinalis: characterization of cDNAs and spatial expression. Dev. Dynam. 230, 743–753 (2004).

    Article  CAS  Google Scholar 

  95. Sebé-Pedrós, A. & Ruiz-Trillo, I. Evolution and classification of the T-box transcription factor family. Curr. Top. Dev. Biol. 122, 1–26 (2017).

    Article  PubMed  Google Scholar 

  96. Sebe-Pedros, A., de Mendoza, A., Lang, B. F., Degnan, B. M. & Ruiz-Trillo, I. Unexpected repertoire of metazoan transcription factors in the unicellular holozoan Capsaspora owczarzaki. Mol. Biol. Evol. 28, 1241–1254 (2011).

    Article  CAS  PubMed  Google Scholar 

  97. Arnold, S. J. et al. Brachyury is a target gene of the Wnt/β-catenin signaling pathway. Mechanisms Dev. 91, 249–258 (2000).

    Article  CAS  PubMed  Google Scholar 

  98. Pukhlyakova, E., Aman, A. J., Elsayad, K. & Technau, U. β-Catenin-dependent mechanotransduction dates back to the common ancestor of Cnidaria and Bilateria. Proc. Natl Acad. Sci. USA 115, 6231–6236 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Sethi, A. J., Wikramanayake, R. M., Angerer, R. C., Range, R. C. & Angerer, L. M. Sequential signaling crosstalk regulates endomesoderm segregation in sea urchin embryos. Science 335, 590–593 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Niehrs, C. On growth and form: a Cartesian coordinate system of Wnt and BMP signaling specifies bilaterian body axes. Development 137, 845–857 (2010).

    Article  CAS  PubMed  Google Scholar 

  101. Andrikou, C., Iovene, E., Rizzo, F., Oliveri, P. & Arnone, M. I. Myogenesis in the sea urchin embryo: the molecular fingerprint of the myoblast precursors. Evodevo 4, 33 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Genikhovich, G. & Technau, U. Complex functions of Mef2 splice variants in the differentiation of endoderm and of a neuronal cell type in a sea anemone. Development 138, 4911–4919 (2011).

    Article  CAS  PubMed  Google Scholar 

  103. Martindale, M. Q., Pang, K. & Finnerty, J. R. Investigating the origins of triplosblasty: ‘mesodermal’ gene expression in a diploblastic animal, the sea anemone Nematostella vectensis (phylum, Cnidaria; class, Anthozoa). Development 131, 2463–2474 (2004).

    Article  CAS  PubMed  Google Scholar 

  104. Griffith, C. M., Wiley, M. J. & Sanders, E. J. The vertebrate tail bud: three germ layers from one tissue. Anat. Embryol. 185, 101–113 (1992).

    Article  CAS  Google Scholar 

  105. Gont, L. K., Steinbeisser, H., Blumberg, B. & de Robertis, E. M. Tail formation as a continuation of gastrulation: the multiple cell populations of the Xenopus tailbud derive from the late blastopore lip. Development 119, 991–1004 (1993).

    Article  CAS  PubMed  Google Scholar 

  106. Bergsland, M. et al. Sequentially acting Sox transcription factors in neural lineage development. Genes Dev. 25, 2453–2464 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Wilson, V., Olivera-Martinez, I. & Storey, K. G. Stem cells, signals and vertebrate body axis extension. Development 136, 1591–1604 (2009).

    Article  CAS  PubMed  Google Scholar 

  108. Bouldin, C. M. et al. Wnt signaling and tbx16 form a bistable switch to commit bipotential progenitors to mesoderm. Development 142, 2499–2507 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Takemoto, T. et al. Tbx6-dependent Sox2 regulation determines neural or mesodermal fate in axial stem cells. Nature 470, 394–398 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Magie, C. R., Pang, K. & Martindale, M. Q. Genomic inventory and expression of Sox and Fox genes in the cnidarian Nematostella vectensis. Dev. Genes Evol. 215, 618–630 (2005).

    Article  CAS  PubMed  Google Scholar 

  111. Fritzenwanker, J. H. & Technau, U. Induction of gametogenesis in the basal cnidarian Nematostella vectensis (Anthozoa). Dev. Genes Evol. 212, 99–103 (2002).

    Article  PubMed  Google Scholar 

  112. Genikhovich, G. & Technau, U. Induction of spawning in the starlet sea anemone Nematostella vectensis, in vitro fertilization of gametes, and dejellying of zygotes. Cold Spring Harb. Protoc. 4, pdb.prot5281 (2009).

  113. Leahy, P. S. Laboratory culture of Strongylocentrotus purpuratus adults, embryos, and larvae. Methods Cell. Biol. 27, 1–13 (1986).

    Article  CAS  PubMed  Google Scholar 

  114. Perillo, M. et al. New neuronal subtypes with a ‘pre-pancreatic’ signature in the sea urchin Stongylocentrotus purpuratus. Front. Endocrinol. 9, 650 (2018).

    Article  Google Scholar 

  115. Altenhoff, A. M., Gil, M., Gonnet, G. H. & Dessimoz, C. Inferring hierarchical orthologous groups from orthologous gene pairs. PLoS ONE 8, e53786 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Altenhoff, A. M. et al. The OMA orthology database in 2018: retrieving evolutionary relationships among all domains of life through richer web and programmatic interfaces. Nucleic Acids Res. 46, D477–D485 (2018).

    Article  CAS  PubMed  Google Scholar 

  117. Altenhoff, A. M. et al. OMA orthology in 2021: website overhaul, conserved isoforms, ancestral gene order and more. Nucleic Acids Res. 49, D373–D379 (2021).

    Article  CAS  PubMed  Google Scholar 

  118. Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics 26, 589–595 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Bardet, A. F. et al. Identification of transcription factor binding sites from ChIP–seq data at high resolution. Bioinformatics 29, 2705–2713 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Machanick, P. & Bailey, T. L. MEME-ChIP: motif analysis of large DNA datasets. Bioinformatics 27, 1696–1697 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Renfer, E. & Technau, U. Meganuclease-assisted generation of stable transgenics in the sea anemone Nematostella vectensis. Nat. Protoc. 12, 1844–1854 (2017).

    Article  CAS  PubMed  Google Scholar 

  122. Andrews, S. FastQC (Babraham Bioinformatics, 2010); https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

  123. Ewels, P., Magnusson, M., Lundin, S. & Käller, M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32, 3047–3048 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Article  CAS  PubMed  Google Scholar 

  125. Liao, Y., Smyth, G. K. & Shi, W. FeatureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).

    Article  CAS  PubMed  Google Scholar 

  126. Liao, Y., Smyth, G. K. & Shi, W. The Subread aligner: fast, accurate and scalable read mapping by seed-and-vote. Nucleic Acids Res. 41, e108 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Varet, H., Brillet-Guéguen, L., Coppée, J.-Y. & Dillies, M.-A. SARTools: a DESeq2- and EdgeR-based R pipeline for comprehensive differential analysis of RNA-seq data. PLoS ONE 11, e0157022 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  129. McCarthy, D. J., Chen, Y. & Smyth, G. K. Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res. 40, 4288–4297 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417–419 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Genikhovich, G. & Technau, U. In situ hybridization of starlet sea anemone (Nematostella vectensis) embryos, larvae, and polyps. Cold Spring Harb. Protoc. 4, pdb.prot5282 (2009).

  132. Perillo, M., Paganos, P., Spurrell, M., Arnone, M. I. & Wessel, G. M. in Developmental Biology of the Sea Urchin and Other Marine Invertebrates: Methods and Protocols: 2219 (eds Carroll, D. J. & Stricker, S. A.) 195–216 (Humana Press, 2021).

  133. Takacs, C. M. et al. Expression of an NK2 homeodomain gene in the apical ectoderm defines a new territory in the early sea urchin embryo. Dev. Biol. 269, 152–164 (2004).

    Article  CAS  PubMed  Google Scholar 

  134. Garner, S. et al. Neurogenesis in sea urchin embryos and the diversity of deuterostome neurogenic mechanisms. Development 143, 286–297 (2016).

    CAS  PubMed  Google Scholar 

  135. Katoh, K. & Standley, D. M. MAFFT Multiple Sequence Alignment Software Version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Minh, B. Q., Nguyen, M. A. T. & von Haeseler, A. Ultrafast approximation for phylogenetic bootstrap. Mol. Biol. Evol. 30, 1188–1195 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Roth, A. C. J., Gonnet, G. H. & Dessimoz, C. Algorithm of OMA for large-scale orthology inference. BMC Bioinf. 9, 518 (2008).

    Article  Google Scholar 

  138. Jones, P. et al. InterProScan 5: genome-scale protein function classification. Bioinformatics 30, 1236–1240 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Carlsson, P. & Mahlapuu, M. Forkhead transcription factors: key players in development and metabolism. Dev. Biol. 250, 1–23 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to I. Blitz for critically reading the manuscript. We would like to thank the members of the Technau and the Arnone laboratory for discussions. This work was supported by the EU-ITN EVONET to U.T. and M.I.A. and by grants of the Austrian Science Fund FWF to U.T. (P34404, P31018) and by EU-ITN EVOCELL (grant no. 766053) to M.I.A.

Author information

Authors and Affiliations

Authors

Contributions

U.T. and M.I.A. conceived the study. M.S., C.A., P.F.M., P.P. and T.L. performed experiments. M.S., R.D., D.V., B.Z., H.A.S., G.G., G.B., M.I.A. and U.T. analysed the data. M.S., C.A., R.D., M.I.A. and U.T. wrote the paper.

Corresponding authors

Correspondence to Maria Ina Arnone or Ulrich Technau.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks Noriyuki Satoh, Jesse Veenvliet and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Specificity of the Brachyury antibodies and target gene detection strategy.

Specificity of the Brachyury antibodies and target gene detection strategy. (A) Ectopic expression of Brachyury at aboral pole of Nematostella confirms the specificity of the antibody. Zygotes were injected with a plasmid of EF1a::mCherry-p2A-Brachyury. Embryos with mosaic expression were stained for mCherry and Brachyury antibodies. (B) Western Blot of Brachyury antibody in control and Morpholino-mediated knockdown of brachyury in Nematostella (C) Immunocytochemistry of gastrula stage embryos of Nematostella (oral views) in controls and after morpholino-mediated knockdown of Brachyury. (D) Quantitative summary of Brachyury knockdown with morpholino oligonucleotides. (E) Western blot of anti-Brachyury in Strongylocentrotus. The estimated protein size is approx. 50kD. Developmental stages tested: 6h, 12h, 48h, 72h. Recombinant protein (RP) size: 9 kD. (F, G) Heatmap of Brachyury binding sites in Bra_AB1 and Bra_AB2 of Nematostella and Strongylocentrotus related to the TSS of all target genes. (H) Summary of the sources of the datasets used in this study.

Extended Data Fig. 2 Brachyury binding sites and relationship to chromatin modifications.

Brachyury binding sites and relationship to chromatin modifications. (A) Heatmap of Nematostella Brachyury binding sites from this study with chromatin modification sites earlier identified in Schwaiger et al. 2014. (B) Venn diagram showing the overlap of Brachyury binding sites in Nematostella identified in this study overlaps with the enhancer/promoter sites previously identified in51. (C) Venn diagram of Brachyury binding sites identified in this study in Strongylocentrotus showing the overlap with the previously identified open chromatin sites identified with ATAC-seq data. (D) Brachyury target selection strategy. Two closest genes on either side of the binding site were considered and their respective orthologs in the species under study were identified. A gene was prioritized as a target, if it was also a target gene in one or more species.

Extended Data Fig. 3 PCA analyses and summary of DEG analyses of RNA-seq experiments.

PCA analyses and summary of DEG analyses of RNA-seq experiments. (AD) Principal Component Analysis (PCA) of RNA-seq datasets in Nematostella, Strongylocentrotus, Xenopus and Mouse respectively. The blue dots represent the control/WT samples while as red dots indicate KD/KO samples/ In case of Nematostella both pre-mRNA splicing (spl) and translation-blocking (tra) morpholinos were used. (E) Summary of differentially expressed genes after Bra KD/KO. Differential expression analysis was done using DEseq2 R package with 0.05 alpha value. Data for Nematostella, Strongylocentrotus and Xenopus is from morpholino induced knockdown of Bra transcripts while mouse data is a result of Bra knockout. (F) Overlap of direct (ChIP–seq detected) and indirect targets (DEGs) across different species. Each species was used as a query species (query dataset) and the genes determined that are differentially expressed, and also ChIP targets (‘column ‘direct targets in query’) or not ChIP targets (column ‘indirect targets in query’). The numbers refer to the number of orthologs in each one of the other species. The numbers are low, since the overlap between ChIP–seq targets and DEGs from RNA-seq experiments is only 1–10% within a given species.

Extended Data Fig. 4 Motif analyses of Brachyury ChIP-peaks and Gene Ontology analyses of target genes.

Motif analyses of Brachyury ChIP-peaks and Gene Ontology analyses of target genes. (A) Brachyury ChIP metaplots around Brachyury peaks containing palindrome or half-palindrome (single) or no Brachyury binding motifs. The average read count (normalized to a million reads) was calculated for Brachyury ChIP–seq reads for regions around peak summits spanning 2kb in 20bp windows. The shaded area around the lines represents the 95% confidence interval across peaks in a category. Note that in all four species, peaks with palindromes show significantly higher ChIP–seq read counts, which may serve as a proxy for the strength of Brachyury binding. (B) Intersection of motifs with the peak region. The Brachyury peak region (as identified using the Peakzilla algorithm) was scanned for presence of other transcription factor binding sites using Fimo (MEME-ChIP suite) with default settings. The resulting binding motifs were grouped by the transcription factor families Paired box (Pax), basic helix–loop–helix (bHLH), Forkhead box (Fox), homeobox (homeo), High mobility group (hmg), T-box (tbox). Presence of these motifs together with the Brachyury motif is highlighted in orange in the upset plots (iii, vi, ix, xii). Distance of these motifs from the peak centre was also tracked and is shown in adjoining plots (I, ii, iv, v, vii, viii, x, xi). (C) ChIP/DE gene set overlap and GO analysis. Overlap (dark grey) between ChIP targets (black) and differentially expressed (light grey) genes in M. musculus (i), X. tropicalis (iv), S. purpuratus (vi), N. vectensis (x). In C. owczarzaki (xiii) only the number of ATAC-seq peaks with Bra motifs is shown. Gene ontology analysis of Brachyury ChIP targets for M. musculus (ii), X. tropicalis (v), S. purpuratus (vii), N. vectensis (xi) and C. owczarzaki (xiv) and of differentially expressed genes after Bra KO/KD (iii, vi, ix, xii). Only gene ontology terms for biological process and molecular function were reported. The colour of the dot represents the score (−log(p-value)) assigned by topGO while the size of the dot represents the number of genes associated with the term. (D) GO analyses of target genes of peaks with or without a Bra consensus motif. Note that no significant difference can be detected.

Extended Data Fig. 5 Expression analysis of Brachyury ChIP targets by WMISH after knockdown in Nematostella.

Expression analysis of Brachyury ChIP targets by WMISH after knockdown in Nematostella. (A) Morpholino-mediated knockdown of target genes with complex expression pattern show partial down or upregulation in the ectodermal layer. (B) Neuronal target genes that are not affected by Brachyury knockdown. Note that all unaffected genes are expressed in the inner layer of the embryo. (C) Knockdown of SoxB1 (a homologue of vertebrate Sox2) shows no effect on neuronal target genes regulated by Brachyury.

Extended Data Fig. 6 Expression analyses of Brachyury target genes in Strongylocentrotus upon knockdown.

Expression analyses of Brachyury target genes in Strongylocentrotus upon knockdown. (A) ChIP target genes that are not affected by Brachyury knockdown. (B) Expression analysis of Brachyury RNA-seq targets by WMISH after morpholino induced knockdown (C) Expression analysis of Brachyury RNA-seq targets by immunohistochemistry after morpholino induced knockdown. Arrows show the embryonic domain in which we see an effect (red arrow: mesodermally derived; blue ectodermally derived). (D) Differentially expressed genes after Morpholino induced knockdown that are also ChIP targets at 24h. Key genes playing a crucial role in endoderm development are highlighted in yellow, key genes playing a role in mesoderm development are highlighted in red while key genes playing a role in ectoderm development are highlighted in blue. Asterisks indicate genes that are also ChIP targets. l/v: lateral view; v/v vegetal view; o/v oral view; a/v aboral view. up: upregulated gene; down; downregulated gene. The scale bar is 20 μm.

Extended Data Fig. 7 Shared Brachyury targets between lineages of Metazoa, Bilateria, Chordata and Vertebrata.

Shared Brachyury targets between lineages of Metazoa, Bilateria, Chordata and Vertebrata. Upset plot of shared orthologous genes as detected by OMA between different lineage combinations. Note that brachyury is the only target gene found in all investigated organisms. The large number of shared target genes between mouse and Xenopus indicates that this screen is robust against slight differences in developmental staging, source of cells, experimental design and sensitivity.

Extended Data Fig. 8 Protein phylogenies of selected target genes.

Protein phylogenies of selected target genes. (A) T-box family phylogenetic tree T-Box family tree constructed with T-box genes from Apis mellifera (Ame), Branchiostoma floridae (Bfl), Capsaspora owczarzaki (CAOG), Ciona intestinalis (Ciona), Lottia gigantean (Lgi), Mus musculus (mmus), Nematostella vectensis (NVE), Strongylocentrotus purpuratus (Spu), Xenopus tropicalis (xtro), Rattus norvegicus (Rat), Saccoglossus kowalevskii (Sko). Tree was constructed using maximum likelihood method with 1000 UFboot samples, the values at the nodes represent the support values. UFboot values below 50% are not shown and the nodes are marked with a red circle. The values at nodes with 100% support are also not shown. The tree was rooted on a T-box gene from the fungus Paramicrosporidium saccamoebae. Brachyury target genes in Nematostella and Strongylocentrotus are indicated by arrows. (B) Sox family phylogenetic tree Sox family tree constructed with Sox genes from Apis mellifera (ame), Acropora millepora (Ami), Amphimedon queenslandica (Aq), Ciona intestinalis (ci), Mus musculus (mmu), Nematostella vectensis (NVE), Strongylocentrotus purpuratus (Spu), Xenopus tropicalis (xtro). Tree was constructed with a maximum likelihood method with 1000 UFboots samples, the values at the nodes represent the support values. UFboots values below 50% are not shown and the nodes are marked with a red circle. The values at nodes with 100% support are also not shown. The tree was rooted with a sponge A. queenslandica Sox protein. Brachyury target genes in Nematostella and Strongylocentrotus are indicated by arrows. (C) Zic family phylogeny ZIC family tree constructed from ZIC genes from Amphimedon queenslandica (Aque), Branchiostoma floridae (Bflo), Capitella teleta (Ctel), Capsaspora owczarzaki (Cowc), Ciona intestinalis (Cint), Drosophila melanogaster (Dmel), Homo sapiens (Hsap), Mus musculus (Mmus), Nematostella vectensis (Nvec), Strongylocentrotus purpuratus (Spur), Tribolium castaneum (Tcas), Xenopus tropicalis (Xtro). This protein maximum likelihood tree was constructed using IQ-Tree with 10000 UFboot samples. The values at the nodes represent the UFboot support, where values below 50 % are not shown. The tree is rooted between the ZIC and GLI/GLIS subfamilies. Sequences from Nematostella are marked bold in green, those from Strongylocentrotus in bold and blue. Brachyury target genes in Nematostella and Strongylocentrotus are indicated by arrows. (D) TFAP2 family phylogeny TFAP2 family tree constructed from TFAP2 genes from Amphimedon queenslandica (Aque), Branchiostoma floridae (Bflo), Capitella teleta (Ctel), Ciona intestinalis (Cint), Drosophila melanogaster (Dmel), Homo sapiens (Hsap), Mus musculus (Mmus), Nematostella vectensis (Nvec), Strongylocentrotus purpuratus (Spur), Tribolium castaneum (Tcas), Xenopus tropicalis (Xtro). This protein maximum likelihood tree was constructed using IQ-Tree with 10000 UFboot samples. The values at the nodes represent the UFboot support, where values below 50 % are not shown. The tree is shown midpoint-rooted with Figtree. Sequences from Nematostella are marked bold in green, those from Strongylocentrotus in bold and blue. Brachyury target genes in Nematostella and Strongylocentrotus are indicated by arrows. (E) RNF family phylogeny RNF family tree constructed from RNF genes from Amphimedon queenslandica (Aque), Branchiostoma floridae (Bflo), Capitella teleta (Ctel), Capsaspora owczarzaki (Cowc), Ciona intestinalis (Cint), Drosophila melanogaster (Dmel), Homo sapiens (Hsap), Mus musculus (Mmus), Nematostella vectensis (Nvec), Strongylocentrotus purpuratus (Spur), Tribolium castaneum (Tcas), Xenopus tropicalis (Xtro). This protein maximum likelihood tree was constructed using IQ-Tree with 10000 UFboot samples. The values at the nodes represent the UFboot support, where values below 50 % are not shown. The tree is shown midpoint-rooted with Figtree. Sequences from Nematostella are marked bold in green, those from Strongylocentrotus in bold and blue. Brachyury target genes in Nematostella and Strongylocentrotus are indicated by arrows. (F) RFX family phylogeny RFX family tree constructed from RFX genes from Amphimedon queenslandica (Aque), Branchiostoma floridae (Bflo), Capitella teleta (Ctel), Capsaspora owczarzaki (Cowc), Ciona intestinalis (Cint), Drosophila melanogaster (Dmel), Homo sapiens (Hsap), Mus musculus (Mmus), Nematostella vectensis (Nvec), Strongylocentrotus purpuratus (Spur), Tribolium castaneum (Tcas), Xenopus tropicalis (Xtro). This protein maximum likelihood tree was constructed using IQ-Tree with 10000 UFboot samples. The values at the nodes represent the UFboot support, where values below 50 % are not shown. The tree is shown midpoint-rooted with Figtree. Sequences from Nematostella are marked bold in green, those from Strongylocentrotus in bold and blue. Brachyury target genes in Nematostella and Strongylocentrotus are indicated by arrows. (G) NR2 family phylogeny NR2f family tree constructed from NR2 genes from Amphimedon queenslandica (Aque), Branchiostoma floridae (Bflo), Capitella teleta (Ctel), Ciona intestinalis (Cint), Drosophila melanogaster (Dmel), Homo sapiens (Hsap), Mus musculus (Mmus), Nematostella vectensis (Nvec), Strongylocentrotus purpuratus (Spur), Tribolium castaneum (Tcas), Xenopus tropicalis (Xtro). This protein maximum likelihood tree was constructed using IQ-Tree with 10000 UFboot samples. The values at the nodes represent the UFboot support, where values below 50 % are not shown. The tree is shown midpoint-rooted with Figtree. Sequences from Nematostella are marked bold in green, those from Strongylocentrotus in bold and blue. Brachyury target genes in Nematostella and Strongylocentrotus are indicated by arrows.

Extended Data Fig. 9 Expression of apomorphic and synapomorphic target genes of Brachyury in mouse E8.5 neuronal, endodermal, and mesodermal cell types.

Expression of apomorphic and synapomorphic target genes of Brachyury in mouse E8.5 neuronal, endodermal, and mesodermal cell types. This is the same analysis as shown in Figure 6, except that definitive endoderm cells were removed from the analysis (AC) or the single-cell gene expression dataset from Grosswendt et al.121 (E, F) was used. AC: The expression of the target genes in neuronal versus mesodermal cell types was annotated using single-cell RNA-seq data from E8.0 and E8.5 mouse embryos, as in Figure 6. However, since definitive endoderm cells in this dataset express notochord marker genes, we decided to remove these cells from the analysis before continuing as in Figure 6. (A) Heatmap of the log2 fold change (logFC) of neuronal (turquoise) or endodermal (yellow) vs mesodermal (purple) gene expression for each gene using the corresponding mouse gene symbols as they appeared in the single-cell dataset in each node (see Methods for details). B) Boxplot of the log2 fold change (y-axis) of endodermal vs mesodermal gene expression for all genes per node (x-axis). Note that node II is enriched in endodermal expression while node V is enriched in mesodermal expression (p-value = 0.003, Wilcoxon Rank Sum Test). (C) Boxplot of the log2 fold change (y-axis) of neuronal vs mesodermal gene expression for all genes per node (x-axis). Note that node II is enriched in neuronal expression while node V is enriched in mesodermal expression (p-value = 0.008, Wilcoxon Rank Sum Test). DF: The expression of the target genes in neuronal versus mesodermal cell types was annotated using single-cell RNA-seq data from E8.5 mouse embryos (read counts per gene/cell from GEO accession GSE122187). To annotate cells as neuronal, endodermal or mesodermal, we used the information from Supplementary Table 2 of Grosswendt et al. For endodermal, we used Lineage = Eendo, for mesodermal we used Lineage = Emeso, and for neuronal we used the following cell states: 1,11,24, and 39, which, according to Supplementary Fig. 1i of Grosswendt et al corresponds to: neural ectoderm anterior, neural ectoderm posterior, fore/midbrain, and future spinal cord. (D) Heatmap of the log2 fold change (logFC) of neuronal (turquoise) or endodermal (yellow) vs mesodermal (purple) gene expression for each gene using the corresponding mouse gene symbols as they appeared in the single-cell dataset in each node (see Methods for details). (E) Boxplot of the log2 fold change (y-axis) of neuronal vs mesodermal gene expression for all genes per node (x-axis). Note that node II is enriched in neuronal expression while node V is enriched in mesodermal expression (p-value = 0.037, Wilcoxon Rank Sum Test). (F) Boxplot of the log2 fold change (y-axis) of endodermal vs mesodermal gene expression for all genes per node (x-axis). Note that when, as is the case in this dataset, ‘gut’ is the only annotated endodermal cell type, node II is not more enriched in endodermally expressed genes compared to node V (p-value = 0.23, Wilcoxon Rank Sum Test). The boxes range from the 25th to the 75th percentile and the horizontal lines represent the median. Outliers are shown as dots.

Supplementary information

Supplementary Information

Supplementary results and discussion.

Reporting Summary

Peer Review File

Supplementary Table

Master table of all target genes in all compared species.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schwaiger, M., Andrikou, C., Dnyansagar, R. et al. An ancestral Wnt–Brachyury feedback loop in axial patterning and recruitment of mesoderm-determining target genes. Nat Ecol Evol 6, 1921–1939 (2022). https://doi.org/10.1038/s41559-022-01905-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-022-01905-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing