Decadal ecosystem response to an anomalous melt season in a polar desert in Antarctica

Published online:

Amplified climate change in polar regions is significantly altering regional ecosystems, yet there are few long-term records documenting these responses. The McMurdo Dry Valleys (MDV) cold desert ecosystem is the largest ice-free area of Antarctica, comprising soils, glaciers, meltwater streams and permanently ice-covered lakes. Multi-decadal records indicate that the MDV exhibited a distinct ecosystem response to an uncharacteristic austral summer and ensuing climatic shift. A decadal summer cooling phase ended in 2002 with intense glacial melt (‘flood year’)—a step-change in water availability triggering distinct changes in the ecosystem. Before 2002, the ecosystem exhibited synchronous behaviour: declining stream flow, decreasing lake levels, thickening lake ice cover, decreasing primary production in lakes and streams, and diminishing soil secondary production. Since 2002, summer air temperatures and solar flux have been relatively consistent, leading to lake level rise, lake ice thinning and elevated stream flow. Biological responses varied; one stream cyanobacterial mat type immediately increased production, but another stream mat type, soil invertebrates and lake primary productivity responded asynchronously a few years after 2002. This ecosystem response to a climatic anomaly demonstrates differential biological community responses to substantial perturbations, and the mediation of biological responses to climate change by changes in physical ecosystem properties.

  • Subscribe to Nature Ecology & Evolution for full access:



Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.


  1. 1.

    Polyakov, I. V. et al. Observationally based assessment of polar amplification of global warming. Geophys. Res. Lett. 29, 24–25 (2002).

  2. 2.

    Schofield, O. et al. How do polar marine ecosystems respond to rapid climate change? Science 328, 1520–1523 (2010).

  3. 3.

    Post, E. et al. Ecological dynamics across the Arctic associated with recent climate change. Science 325, 1355–1358 (2009).

  4. 4.

    McClintock, J., Ducklow, H. & Fraser, W. Ecological responses to climate change on the Antarctic Peninsula. Am. Sci. 96, 302–310 (2008).

  5. 5.

    Hinzman, L. D. et al. Evidence and implications of recent climate change in northern Alaska and other Arctic regions. Clim. Change 72, 251–298 (2005).

  6. 6.

    Jia, G. J., Epstein, H. E. & Walker, D. A. Greening of Arctic Alaska, 1981–2001. Geophys. Res. Lett. 30, 2067 (2003).

  7. 7.

    Grebmeier, J. & Priscu, J. C. Frontiers in Understanding Climate Change and Polar Ecosystems: Report of a Workshop (National Academies Press, Washington DC, 2011).

  8. 8.

    Steig, E. J. et al. Warming of the Antarctic ice-sheet surface since the 1957 International Geophysical Year. Nature 457, 459–62 (2009).

  9. 9.

    Bromwich, D. H. et al. Central West Antarctica among the most rapidly warming regions on Earth. Nat. Geosci. 6, 139–145 (2013).

  10. 10.

    Chapman, W. L. & Walsh, J. E. A synthesis of Antarctic temperatures. J. Clim. 20, 4096–4117 (2007).

  11. 11.

    Fountain, A. G. et al. The impact of a large-scale climate event on Antarcic ecosystem processes. BioScience 66, 848–863 (2016).

  12. 12.

    Doran, P. T. et al. Antarctic climate cooling and terrestrial ecosystem response. Nature 415, 517–520 (2002).

  13. 13.

    Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693 (2001).

  14. 14.

    Sonderegger, D. L., Wang, H., Clements, W. H. & Noon, B. R. Using SiZer to detect thresholds in ecological data. Front. Ecol. Environ. 7, 190–195 (2009).

  15. 15.

    Clements, W. H., Vieira, N. K. M. & Sonderegger, D. L. Use of ecological thresholds to assess recovery in lotic ecosystems. J. N. Am. Benthol. Soc. 29, 1017–1023 (2010).

  16. 16.

    Bestelmeyer, B. T. et al. Analysis of abrupt transitions in ecological systems. Ecosphere 2, 1–26 (2011).

  17. 17.

    McKnight, D. M. et al. Dry Valley streams in Antarctica: ecosystems waiting for water. BioScience 49, 985–995 (1999).

  18. 18.

    Fountain, A. G. et al. Physical controls on the Taylor Valley ecosystem. BioScience 49, 961–971 (1999).

  19. 19.

    Kohler, T. J. et al. Life in the main channel: long-term hydrologic control of microbial mat abundance in McMurdo Dry Valley streams, Antarctica. Ecosystems 18, 310–327 (2015).

  20. 20.

    Stanish, L. F., Nemergut, D. R. & McKnight, D. M. Hydrologic processes influence diatom community composition in Dry Valley streams. J. N. Am. Benthol. Soc. 30, 1057–1073 (2011).

  21. 21.

    Esposito, R. M. M. et al. Antarctic climate cooling and response of diatoms in glacial meltwater streams. Geophys. Res. Lett. 33, 2–5 (2006).

  22. 22.

    Moorhead, D. L., Wall, D. H., Virginia, R. A. & Parsons, A. N. Distribution and life-cycle of Scottnema lindsayae (Nematoda) in Antarctic soils: a modeling analysis of temperature responses. Polar Biol. 25, 118–125 (2002).

  23. 23.

    Wall, D. H. Biodiversity and ecosystem functioning in terrestrial habitats of Antarctica. Antarct. Sci. 17, 523–531 (2005).

  24. 24.

    Barrett, J. E. et al. Persistent effects of a discrete warming event on a polar desert ecosystem. Glob. Change Biol. 14, 2249–2261 (2008).

  25. 25.

    Obryk, M. et al. Responses of Antarctic marine and freshwater ecosystems to changing ice conditions. BioScience 66, 864–879 (2016).

  26. 26.

    Foreman, C. M., Wolf, C. F. & Priscu, J. C. Impact of episodic warming events on the physical, chemical and biological relationships of lakes in the McMurdo Dry Valleys, Antarctica. Aquat. Geochem. 10, 239–268 (2004).

  27. 27.

    Gherardi, L. A. & Sala, O. E. Enhanced precipitation variability decreases grass- and increases shrub-productivity. Proc. Natl Acad. Sci. USA 112, 12735–12740 (2015).

  28. 28.

    Kohler, T. J., Chatfield, E., Gooseff, M. N., Barrett, J. E. & McKnight, D. M. Recovery of Antarctic stream epilithon from simulated scouring events. Antarct. Sci. 27, 1–14 (2015).

  29. 29.

    Overhoff, A., Freckman, D. & Virginia, R. Life cycle of the microbivorous Antarctic Dry Valley nematode Scottnema lindsayae (Timm 1971). Polar Biol. 13, 151–156 (1993).

Download references


The McMurdo LTER team gratefully acknowledges the funding support from the National Science Foundation for the initial LTER grant and subsequent renewals (award numbers 9211773, 9813061, 9810219, 0096250, 0423595, 0832755, 1041742 and 1115245). We are grateful for the numerous collaborators and students who helped carry out lab and fieldwork associated with this project, and thank the logistical and helicopter support contractors who have facilitated our field research in Antarctica since 1993 through the US Antarctic Program: Antarctic Support Associates, Raytheon Polar Services, Antarctic Support Contractors and Petroleum Helicopters.

Author information


  1. Institute of Arctic and Alpine Research, University of Colorado, Boulder, CO, 80309, USA

    • Michael N. Gooseff
    • , Diane M. McKnight
    •  & Eric R. Sokol
  2. Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA

    • John E. Barrett
  3. Department of Biology and Monte L. Bean Museum, Brigham Young University, Provo, UT, 84602, USA

    • Byron J. Adams
  4. Department of Geology and Geophysics, Louisiana State University, Baton Rouge, LA, 70803, USA

    • Peter T. Doran
  5. Department of Geology, Portland State University, Portland, OR, 97207-0751, USA

    • Andrew G. Fountain
  6. School of Earth Sciences, Ohio State University, Columbus, OH, 43210, USA

    • W. Berry Lyons
  7. Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, 59717, USA

    • John C. Priscu
  8. Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA

    • Cristina Takacs-Vesbach
  9. Department of Biology and School of Global Environmental Sustainability, Colorado State University, Fort Collins, CO, 80523, USA

    • Martijn L. Vandegehuchte
    •  & Diana H. Wall
  10. Research Unit Community Ecology, Swiss Federal Institute for Forest, Snow and Landscape Research, 8903, Birmensdorf, Switzerland

    • Martijn L. Vandegehuchte
  11. Terrestrial Ecology Unit, Department of Biology, Ghent University, 9000, Ghent, Belgium

    • Martijn L. Vandegehuchte
  12. Environmental Studies Program, Dartmouth College, Hanover, NH, 03755, USA

    • Ross A. Virginia


  1. Search for Michael N. Gooseff in:

  2. Search for John E. Barrett in:

  3. Search for Byron J. Adams in:

  4. Search for Peter T. Doran in:

  5. Search for Andrew G. Fountain in:

  6. Search for W. Berry Lyons in:

  7. Search for Diane M. McKnight in:

  8. Search for John C. Priscu in:

  9. Search for Eric R. Sokol in:

  10. Search for Cristina Takacs-Vesbach in:

  11. Search for Martijn L. Vandegehuchte in:

  12. Search for Ross A. Virginia in:

  13. Search for Diana H. Wall in:


M.N.G, J.E.B, B.J.A., P.T.D., D.M.M, J.C.P., C.T.-V., R.A.V. and D.H.W designed the experiments, field monitoring and analysis protocols, and analysed data; M.L.V. assembled and corrected long-term soil invertebrate data; E.R.S. performed SiZer analyses; M.N.G. wrote the paper, with substantial input from all authors; all authors assisted with fieldwork.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Michael N. Gooseff.

Supplementary information

  1. 1.

    Supplementary Information

    Supplementary Figures 1–2