Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Historical impacts of grazing on carbon stocks and climate mitigation opportunities

Abstract

Grazing has been associated with contrasting effects on soil carbon stocks at local scales, but accurate global assessments of its net impact are lacking. Here we conducted a meta-analysis of 1,473 soil carbon observations from grazing studies to quantify global changes in soil carbon stocks due to grazing practices. Our analysis shows that grazing has reduced soil carbon stocks at 1-m depth by 46 ± 13 PgC over the past 60 years. The interplay between grazing intensity and environmental factors explains global variations in soil carbon changes. Maps of optimal grazing intensity indicate that implementing grazing management on 21 million km2 of grazing lands, mainly through decreasing grazing intensity on 75% of lands and increasing it on the rest could result in a potential uptake of 63 ± 18 PgC in vegetation and soils. These results highlight the potential of employing grazing as a climate mitigation strategy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Meta-analysis of the grazing effects on soil carbon stocks across different factors.
Fig. 2: Relationships of grazing-driven soil carbon stock changes with grazing intensity.
Fig. 3: Soil carbon stock changes due to livestock grazing.
Fig. 4: Soil carbon changes due to grazing grouped by ecozones.
Fig. 5: Carbon sequestration potential from grazing optimization.

Similar content being viewed by others

Data availability

The two grazing fraction maps used in this study can be obtained from https://boku.ac.at/wiso/sec/data-download and http://www.earthstat.org/cropland-pasture-area-2000/, respectively. The soil carbon stock datasets of SoilGrids 2.0, HWSD and the GSDE are available at https://soilgrids.org/, http://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/harmonized-world-soil-database-v12/en/ and http://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/harmonized-world-soil-database-v12/en/, respectively. The plant biomass maps of harmonized global above and belowground biomass carbon density and the IPCC Tier-1 are available at https://doi.org/10.3334/ORNLDAAC/1763 and https://doi.org/10.15485/1463800, respectively. The collected metadata and maps have been deposited in the Figshare data repository (https://doi.org/10.6084/m9.figshare.21972521)75.

Code availability

All data analysis and plotting (including global maps) for this study were performed or created using R v.4.0.5. The code is available at the Figshare data repository (https://doi.org/10.6084/m9.figshare.21972521)75.

References

  1. Bradford, M. A. et al. Managing uncertainty in soil carbon feedbacks to climate change. Nat. Clim. Change 6, 751–758 (2016).

    Article  Google Scholar 

  2. Davidson, E. A. & Janssens, I. A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440, 165–173 (2006).

    Article  CAS  Google Scholar 

  3. Paustian, K. et al. Climate-smart soils. Nature 532, 49–57 (2016).

    Article  CAS  Google Scholar 

  4. Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 304, 1623–1627 (2004).

    Article  CAS  Google Scholar 

  5. Shi, Z. et al. The age distribution of global soil carbon inferred from radiocarbon measurements. Nat. Geosci. 13, 555–559 (2020).

    Article  CAS  Google Scholar 

  6. Haaf, D., Six, J. & Doetterl, S. Global patterns of geo-ecological controls on the response of soil respiration to warming. Nat. Clim. Change 11, 623–627 (2021).

    Article  Google Scholar 

  7. Maestre, F. T. et al. Grazing and ecosystem service delivery in global drylands. Science 378, 915–920 (2022).

    Article  CAS  Google Scholar 

  8. Bai, Y. F. & Cotrufo, M. F. Grassland soil carbon sequestration: current understanding, challenges, and solutions. Science 377, 603–608 (2022).

    Article  CAS  Google Scholar 

  9. Kristensen, J. A., Svenning, J. C., Georgiou, K. & Malhi, Y. Can large herbivores enhance ecosystem carbon persistence? Trends Ecol. Evol. 37, 117–128 (2022).

    Article  CAS  Google Scholar 

  10. McSherry, M. E. & Ritchie, M. E. Effects of grazing on grassland soil carbon: a global review. Glob. Change Biol. 19, 1347–1357 (2013).

    Article  Google Scholar 

  11. Jiang, Z. Y. et al. Light grazing facilitates carbon accumulation in subsoil in Chinese grasslands: a meta-analysis. Glob. Change Biol. 26, 7186–7197 (2020).

    Article  Google Scholar 

  12. Schmitz, O. J. et al. Animals and the zoogeochemistry of the carbon cycle. Science 362, eaar3213 (2018).

    Article  Google Scholar 

  13. Chang, J. F. et al. Climate warming from managed grasslands cancels the cooling effect of carbon sinks in sparsely grazed and natural grasslands. Nat. Commun. 12, 118 (2021).

    Article  CAS  Google Scholar 

  14. Bardgett, R. D. et al. Combatting global grassland degradation. Nat. Rev. Earth Environ. 2, 720–735 (2021).

    Article  Google Scholar 

  15. Viglizzo, E. F., Ricard, M. F., Taboada, M. A. & Vazquez-Amabile, G. Reassessing the role of grazing lands in carbon-balance estimations: meta-analysis and review. Sci. Total Environ. 661, 531–542 (2019).

    Article  CAS  Google Scholar 

  16. Dong, H., MacDonald, J. D., Ogle, S. M., Sanchez, M. J. S. & Rocha, M. T. 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Volume 4: Agriculture, Forestry and Other Land Use (IPCC, 2019).

  17. Bossio, D. A. et al. The role of soil carbon in natural climate solutions. Nat. Sustain. 3, 391–398 (2020).

    Article  Google Scholar 

  18. Ellison, L. Influence of grazing on plant succession of rangelands. Bot. Rev. 26, 1–78 (1960).

    Article  Google Scholar 

  19. McNaughton, S. Grazing as an optimization process: grass–ungulate relationships in the Serengeti. Am. Nat. 113, 691–703 (1979).

    Article  Google Scholar 

  20. Wilson, C. H., Strickland, M. S., Hutchings, J. A., Bianchi, T. S. & Flory, S. L. Grazing enhances belowground carbon allocation, microbial biomass, and soil carbon in a subtropical grassland. Glob. Change Biol. 24, 2997–3009 (2018).

    Article  Google Scholar 

  21. Koerner, S. E. et al. Change in dominance determines herbivore effects on plant biodiversity. Nat. Ecol. Evol. 2, 1925–1932 (2018).

    Article  Google Scholar 

  22. Núñez, P., Demanet, R., Misselbrook, T., Alfaro, M. & de la Luz Mora, M. Nitrogen losses under different cattle grazing frequencies and intensities in a volcanic soil of southern Chile. Chil. J. Agric. Res. 70, 237–250 (2010).

    Article  Google Scholar 

  23. Zhou, G. et al. Grazing intensity significantly affects belowground carbon and nitrogen cycling in grassland ecosystems: a meta-analysis. Glob. Change Biol. 23, 1167–1179 (2017).

    Article  Google Scholar 

  24. Barbehenn, R. V., Chen, Z., Karowe, D. N. & Spickard, A. C3 grasses have higher nutritional quality than C4 grasses under ambient and elevated atmospheric CO2. Glob. Change Biol. 10, 1565–1575 (2004).

    Article  Google Scholar 

  25. Piipponen, J. et al. Global trends in grassland carrying capacity and relative stocking density of livestock. Glob. Change Biol. 28, 3902–3919 (2022).

    Article  CAS  Google Scholar 

  26. Erb, K.-H. et al. Unexpectedly large impact of forest management and grazing on global vegetation biomass. Nature 553, 73–76 (2018).

    Article  CAS  Google Scholar 

  27. Sanderman, J., Hengl, T. & Fiske, G. J. Soil carbon debt of 12,000 years of human land use. Proc. Natl Acad. Sci. USA 114, 9575–9580 (2017).

    Article  CAS  Google Scholar 

  28. Sierra, C. A. et al. Carbon sequestration in the subsoil and the time required to stabilize carbon for climate change mitigation. Glob. Change Biol. 30, e17153 (2024).

    Article  CAS  Google Scholar 

  29. Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).

    Article  CAS  Google Scholar 

  30. Cook-Patton, S. C. et al. Mapping carbon accumulation potential from global natural forest regrowth. Nature 585, 545–550 (2020).

    Article  CAS  Google Scholar 

  31. Mo, L. et al. Integrated global assessment of the natural forest carbon potential. Nature 624, 1–10 (2023).

  32. Wang, Y. et al. Risk to rely on soil carbon sequestration to offset global ruminant emissions. Nat. Commun. 14, 7625 (2023).

    Article  CAS  Google Scholar 

  33. Abdalla, M. et al. Critical review of the impacts of grazing intensity on soil organic carbon storage and other soil quality indicators in extensively managed grasslands. Agric. Ecosyst. Environ. 253, 62–81 (2018).

    Article  CAS  Google Scholar 

  34. Ma, H. et al. The global distribution and environmental drivers of aboveground versus belowground plant biomass. Nat. Ecol. Evol. 5, 1110–1122 (2021).

    Article  Google Scholar 

  35. Hou, L. L. et al. Grassland ecological compensation policy in China improves grassland quality and increases herders’ income. Nat. Commun. 12, 4683 (2021).

    Article  CAS  Google Scholar 

  36. Ren, S., Cao, Y. & Li, J. Nitrogen availability constrains grassland plant diversity in response to grazing. Sci. Total Environ. 896, 165273 (2023).

    Article  CAS  Google Scholar 

  37. Lai, L. M. & Kumar, S. A global meta-analysis of livestock grazing impacts on soil properties. PLoS ONE 15, e0236638 (2020).

    Article  CAS  Google Scholar 

  38. Xiong, D. P., Shi, P. L., Zhang, X. Z. & Zou, C. B. Effects of grazing exclusion on carbon sequestration and plant diversity in grasslands of China—a meta-analysis. Ecol. Eng. 94, 647–655 (2016).

    Article  Google Scholar 

  39. Hu, Z. M. et al. A synthesis of the effect of grazing exclusion on carbon dynamics in grasslands in China. Glob. Change Biol. 22, 1385–1393 (2016).

    Article  Google Scholar 

  40. Global Ecological Zoning for the Global Forest Resources Assessment, 2000 (FAO, 2001).

  41. Pribyl, D. W. A critical review of the conventional SOC to SOM conversion factor. Geoderma 156, 75–83 (2010).

    Article  CAS  Google Scholar 

  42. Fetzel, T. et al. Quantification of uncertainties in global grazing systems assessment. Glob. Biogeochem. Cycles 31, 1089–1102 (2017).

    Article  CAS  Google Scholar 

  43. Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 36, 1–48 (2010).

    Article  Google Scholar 

  44. Lajeunesse, M. J. Facilitating systematic reviews, data extraction and meta‐analysis with the metagear package for R. Methods Ecol. Evol. 7, 323–330 (2016).

    Article  Google Scholar 

  45. Terrer, C. et al. A trade-off between plant and soil carbon storage under elevated CO2. Nature 591, 599–603 (2021).

    Article  CAS  Google Scholar 

  46. Sterne, J. A. C., Gavaghan, D. & Egger, M. Publication and related bias in meta-analysis: power of statistical tests and prevalence in the literature. J. Clin. Epidemiol. 53, 1119–1129 (2000).

    Article  CAS  Google Scholar 

  47. Rosenberg, M. S. The file‐drawer problem revisited: a general weighted method for calculating fail‐safe numbers in meta‐analysis. Evolution 59, 464–468 (2005).

    Google Scholar 

  48. Liaw, A. & Wiener, M. Classification and regression by randomForest. R. N. 2, 18–22 (2002).

    Google Scholar 

  49. Van Lissa, C. J. MetaForest: exploring heterogeneity in meta-analysis using random forests. Preprint at https://psyarxiv.com/myg6s/ (2017).

  50. Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw. 28, 1–26 (2008).

    Article  Google Scholar 

  51. Moran, P. A. A test for the serial independence of residuals. Biometrika 37, 178–181 (1950).

    Article  CAS  Google Scholar 

  52. Hengl, T. et al. SoilGrids250m: global gridded soil information based on machine learning. PLoS ONE 12, e0169748 (2017).

    Article  Google Scholar 

  53. Wieder, W., Boehnert, J., Bonan, G. & Langseth, M. Regridded Harmonized World Soil Database v1. 2 (ORNL DAAC, 2014).

  54. Shangguan, W., Dai, Y., Duan, Q., Liu, B. & Yuan, H. A global soil data set for Earth system modeling. J. Adv. Model. Earth Syst. 6, 249–263 (2014).

    Article  Google Scholar 

  55. Bouwman, A. F., Van der Hoek, K. W., Eickhout, B. & Soenario, I. Exploring changes in world ruminant production systems. Agric. Syst. 84, 121–153 (2005).

    Article  Google Scholar 

  56. Haberl, H. et al. Quantifying and mapping the human appropriation of net primary production in Earth’s terrestrial ecosystems. Proc. Natl Acad. Sci. USA 104, 12942–12945 (2007).

    Article  CAS  Google Scholar 

  57. Petz, K. et al. Mapping and modelling trade-offs and synergies between grazing intensity and ecosystem services in rangelands using global-scale datasets and models. Glob. Environ. Change 29, 223–234 (2014).

    Article  Google Scholar 

  58. Rothman-Ostrow, P., Gilbert, W. & Rushton, J. Tropical livestock units: re-evaluating a methodology. Front. Vet. Sci. 7, 556788 (2020).

    Article  Google Scholar 

  59. Herrero, M. et al. Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems. Proc. Natl Acad. Sci. USA 110, 20888–20893 (2013).

    Article  CAS  Google Scholar 

  60. Robinson, T. P. et al. Global Livestock Production Systems (FAO and ILRI, 2011).

  61. Krausmann, F. et al. Global human appropriation of net primary production doubled in the 20th century. Proc. Natl Acad. Sci. USA 110, 10324–10329 (2013).

    Article  CAS  Google Scholar 

  62. Zhao, M. S. & Running, S. W. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science 329, 940–943 (2010).

    Article  CAS  Google Scholar 

  63. Smith, W. K. et al. Large divergence of satellite and Earth system model estimates of global terrestrial CO2 fertilization. Nat. Clim. Change 6, 306–310 (2016).

    Article  Google Scholar 

  64. Xiao, L. J. et al. Global depth distribution of belowground net primary productivity and its drivers. Glob. Ecol. Biogeogr. 32, 1435–1451 (2023).

    Article  Google Scholar 

  65. Erb, K.-H. et al. A comprehensive global 5 min resolution land-use data set for the year 2000 consistent with national census data. J. Land Use Sci. 2, 191–224 (2007).

    Article  Google Scholar 

  66. Ramankutty, N., Evan, A. T., Monfreda, C. & Foley, J. A. Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Glob. Biogeochem. Cycles 22, GB1003 (2008).

  67. Gilbert, M. et al. Global distribution data for cattle, buffaloes, horses, sheep, goats, pigs, chickens and ducks in 2010. Sci. Data 5, 180227 (2018).

    Article  Google Scholar 

  68. Oldeman, L., Hakkeling, R., Sombroek, W. & Batjes, N. Global Assessment of Human-Induced Soil Degradation (GLASOD) (ISRIC World Soil Information, 1991).

  69. van den Hoogen, J. et al. Soil nematode abundance and functional group composition at a global scale. Nature 572, 194–198 (2019).

    Article  Google Scholar 

  70. Berdugo, M. et al. Global ecosystem thresholds driven by aridity. Science 367, 787–790 (2020).

    Article  CAS  Google Scholar 

  71. Muggeo, V. M. Segmented: an R package to fit regression models with broken-line relationships. R. N. 8, 20–25 (2008).

    Google Scholar 

  72. Spawn, S. A., Sullivan, C. C., Lark, T. J. & Gibbs, H. K. Harmonized global maps of above and belowground biomass carbon density in the year 2010. Sci. Data 7, 112 (2020).

    Article  Google Scholar 

  73. Gibbs, H. K. & Ruesch, A. New IPCC Tier-1 Global Biomass Carbon Map for the Year 2000 (Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, 2008).

  74. Cai, L. et al. Global models and predictions of plant diversity based on advanced machine learning techniques. N. Phytol. 237, 1432–1445 (2023).

    Article  Google Scholar 

  75. Ren, S. et al. Data and code for ‘Historical impacts of grazing on carbon stocks and climate mitigation opportunities’. Figshare https://doi.org/10.6084/m9.figshare.21972521 (2024).

Download references

Acknowledgements

We sincerely appreciate all the scientists who contribute their precious data for our synthesis study. We thank Z. Luo for providing global BNPP and its uncertainty datasets. This work was supported by the Second Tibetan Plateau Scientific Expedition and Research Program (2019QZKK0606 and 2022QZKK0101) and Science and Technology Major Project of Tibetan Autonomous Region of China (XZ202201ZD0005G01). C.T. acknowledges support from the MIT Climate and Sustainability Consortium (MCSC).

Author information

Authors and Affiliations

Authors

Contributions

S.R. conceived the idea for the study, and developed the concept together with C.T. and D.L. S.R. performed the data analysis and wrote the manuscript, with major contributions provided by C.T. All the authors contributed to the discussions and paper revision.

Corresponding authors

Correspondence to Shuai Ren, César Terrer or Dan Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Climate Change thanks Liming Lai, Shawn Leroux and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Location of 1,473 soil samples.

Sites are overlaid on the global map of grazing fraction, which is derived from Erb et al.65 and Ramankutty et al.66.

Supplementary information

Supplementary Information

Supplementary discussion, Figs. 1–29, Tables 1–5 and references.

Reporting Summary

Supplementary Data

PRISMA checklist for this synthesis that includes detailed contents of the manuscript and other items.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, S., Terrer, C., Li, J. et al. Historical impacts of grazing on carbon stocks and climate mitigation opportunities. Nat. Clim. Chang. 14, 380–386 (2024). https://doi.org/10.1038/s41558-024-01957-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41558-024-01957-9

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology