Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Remote stereocontrol with azaarenes via enzymatic hydrogen atom transfer

Abstract

Strategies for achieving asymmetric catalysis with azaarenes have traditionally fallen short of accomplishing remote stereocontrol, which would greatly enhance accessibility to distinct azaarenes with remote chiral centres. The primary obstacle to achieving superior enantioselectivity for remote stereocontrol has been the inherent rigidity of the azaarene ring structure. Here we introduce an ene-reductase system capable of modulating the enantioselectivity of remote carbon-centred radicals on azaarenes through a mechanism of chiral hydrogen atom transfer. This photoenzymatic process effectively directs prochiral radical centres located more than six chemical bonds, or over 6 Å, from the nitrogen atom in azaarenes, thereby enabling the production of a broad array of azaarenes possessing a remote γ-stereocentre. Results from our integrated computational and experimental investigations underscore that the hydrogen bonding and steric effects of key amino acid residues are important for achieving such high stereoselectivities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Challenges and strategies for remote stereocontrol with an azaarene.
Fig. 2: Scope of azaarenes and alkenes in the enantioselective radical hydroalkylation reaction.
Fig. 3: Detailed insights into mechanistic studies of OYE1.
Fig. 4: Insights from computational analyses of enzyme mechanisms.

Similar content being viewed by others

Data availability

Data relating to the materials and methods, optimization studies, experimental procedures, calculations, atomic coordinates, high-performance liquid chromatography spectra and nuclear magnetic resonance spectra are available in Supplementary Information and supplementary data. The structure of OYE1 used for our calculations is available in the PDB database (3TX9). All data are available from the corresponding author upon reasonable request.

References

  1. Carreira, E. M. & Kvaerno, L. Classics in Stereoselective Synthesis (Wiley-VCH, 2008).

    Google Scholar 

  2. Bornscheuer, U. T. et al. Engineering the third wave of biocatalysis. Nature 485, 185–194 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Devine, P. N. et al. Extending the application of biocatalysis to meet the challenges of drug development. Nat. Rev. Chem. 2, 409–421 (2018).

    Article  Google Scholar 

  4. Chen, K. & Arnold, F. H. Engineering new catalytic activities in enzymes. Nat. Catal. 3, 203–213 (2020).

    Article  CAS  Google Scholar 

  5. McGrath, N. A., Brichacek, M. & Njardarson, J. T. A graphical journey of innovative organic architectures that have improved our lives. J. Chem. Educ. 87, 1348–1349 (2010).

    Article  CAS  Google Scholar 

  6. Taylor, R. D., MacCoss, M. & Lawson, A. D. G. Rings in drugs. J. Med. Chem. 57, 5845–5859 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. Best, D. & Lam, H. W. C=N-containing azaarenes as activating groups in enantioselective catalysis. J. Org. Chem. 79, 831–845 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. Marcos, V. & Alemán, J. Old tricks, new dogs: organocatalytic dienamine activation of α,β-unsaturated aldehydes. Chem. Soc. Rev. 45, 6812–6832 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chauhan, P., Kaya, U. & Enders, D. Advances in organocatalytic 1,6-addition reactions: enantioselective construction of remote stereogenic centers. Adv. Synth. Catal. 359, 888–912 (2017).

    Article  CAS  Google Scholar 

  10. Yin, Y., Zhao, X., Qiao, B. & Jiang, Z. Cooperative photoredox and chiral hydrogen-bonding catalysis. Org. Chem. Front. 7, 1283–1296 (2020).

    Article  CAS  Google Scholar 

  11. Chai, X. et al. Asymmetric hydroaminoalkylation of alkenylazaarenes via cooperative photoredox and chiral hydrogen-bonding catalysis. Angew. Chem. Int. Ed. 61, e202115110 (2022).

    Article  CAS  Google Scholar 

  12. Sorigué, D. et al. An algal photoenzyme converts fatty acids to hydrocarbons. Science 357, 903–907 (2017).

    Article  ADS  PubMed  Google Scholar 

  13. Litman, Z. C., Wang, Y., Zhao, H. & Hartwig, J. F. Cooperative asymmetric reactions combining photocatalysis and enzymatic catalysis. Nature 560, 355–359 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Liu, X. et al. A genetically encoded photosensitizer protein facilitates the rational design of a miniature photocatalytic CO2-reducing enzyme. Nat. Chem. 10, 1201–1206 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Sandoval, B. A. & Hyster, T. K. Emerging strategies for expanding the toolbox of enzymes in biocatalysis. Curr. Opin. Chem. Biol. 55, 45–51 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Grosheva, D. & Hyster, T. K. in Flavin‐Based Catalysis: Principles and Applications (eds Cibulka, R. & Fraaije, M.) 291–313 (Wiley-VCH, 2021).

  17. Harrison, W., Huang, X. & Zhao, H. Photobiocatalysis for abiological transformations. Acc. Chem. Res. 55, 1087–1096 (2022).

    Article  CAS  PubMed  Google Scholar 

  18. Millet, A. et al. Bioinspired supercharging of photoredox catalysis for applications in energy and chemical manufacturing. Acc. Chem. Res. 55, 1423–1434 (2022).

    Article  CAS  PubMed  Google Scholar 

  19. Trimble, J. S. et al. A designed photoenzyme for enantioselective [2+2] cycloadditions. Nature 611, 709–714 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Sun, N. et al. Enantioselective [2+2]-cycloadditions with triplet photoenzymes. Nature 611, 715–720 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Emmanuel, M. A., Greenberg, N. R., Oblinsky, D. G. & Hyster, T. K. Accessing non-natural reactivity by irradiating nicotinamide-dependent enzymes with light. Nature 540, 414–417 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Sandoval, B. A., Meichan, A. J. & Hyster, T. K. Enantioselective hydrogen atom transfer: discovery of catalytic promiscuity in flavin-dependent ‘ene’-reductases. J. Am. Chem. Soc. 139, 11313–11316 (2017).

    Article  CAS  PubMed  Google Scholar 

  23. Toogood, H. S. & Scrutton, N. S. Discovery, characterization, engineering, and applications of ene-reductases for industrial biocatalysis. ACS Catal. 8, 3532–3549 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Biegasiewicz, K. F. et al. Photoexcitation of flavoenzymes enables a stereoselective radical cyclization. Science 364, 1166–1169 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Huang, X. et al. Photoenzymatic enantioselective intermolecular radical hydroalkylation. Nature 584, 69–74 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Page, C. G. et al. Quaternary charge-transfer complex enables photoenzymatic intermolecular hydroalkylation of olefins. J. Am. Chem. Soc. 143, 97–102 (2021).

    Article  CAS  PubMed  Google Scholar 

  27. Huang, X. et al. Photoinduced chemomimetic biocatalysis for enantioselective intermolecular radical conjugate addition. Nat. Catal. 5, 586–593 (2022).

    Article  CAS  Google Scholar 

  28. Fu, H. et al. An asymmetric sp3sp3 cross-electrophile coupling using ‘ene’-reductases. Nature 610, 302–307 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kumar Roy, T., Sreedharan, R., Ghosh, P., Gandhi, T. & Maiti, D. Ene-reductase: a multifaceted biocatalyst in organic synthesis. Chem. Eur. J. 28, e202103949 (2022).

    Article  CAS  PubMed  Google Scholar 

  30. Ye, Y. et al. Using enzymes to tame nitrogen-centred radicals for enantioselective hydroamination. Nat. Chem. 15, 206–212 (2023).

    Article  CAS  PubMed  Google Scholar 

  31. Duan, X. et al. A photoenzymatic strategy for radical-mediated stereoselective hydroalkylation with diazo compounds. Angew. Chem. Int. Ed. 62, e202214135 (2023).

    Article  CAS  Google Scholar 

  32. Emmanuel, M. A. et al. Photobiocatalytic strategies for organic synthesis. Chem. Rev. 123, 5459–5520 (2023).

    Article  CAS  PubMed  Google Scholar 

  33. Zhang, Z. et al. Photoenzymatic enantioselective intermolecular radical hydroamination. Nat. Catal. 6, 687–694 (2023).

    Article  CAS  Google Scholar 

  34. Nakano, Y. et al. Photoenzymatic hydrogenation of heteroaromatic olefins using ‘ene’-reductases with photoredox catalysts. Angew. Chem. Int. Ed. 59, 10484–10488 (2020).

    Article  CAS  Google Scholar 

  35. Maestre-Reyna, M. et al. Serial crystallography captures dynamic control of sequential electron and proton transfer events in a flavoenzyme. Nat. Chem. 14, 677–685 (2022).

    Article  CAS  PubMed  Google Scholar 

  36. Himo, F. Recent trends in quantum chemical modeling of enzymatic reactions. J. Am. Chem. Soc. 139, 6780–6786 (2017).

    Article  CAS  PubMed  Google Scholar 

  37. Sheng, X., Kazemi, M., Planas, F. & Himo, F. Modeling enzymatic enantioselectivity using quantum chemical methodology. ACS Catal. 10, 6430–6449 (2020).

    Article  CAS  Google Scholar 

  38. Himo, F. & de Visser, S. P. Status report on the quantum chemical cluster approach for modeling enzyme reactions. Commun. Chem. 5, 29 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Trott, O. A. & Olson, J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31, 455–461 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graphics 14, 33–38 (1996).

    Article  CAS  Google Scholar 

  41. Lu, T. & Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012).

    Article  PubMed  Google Scholar 

  42. Falivene, L. et al. Towards the online computer-aided design of catalytic pockets. Nat. Chem. 11, 872–879 (2019).

    Article  CAS  PubMed  Google Scholar 

  43. Wang, W. & Malcolm, B. A. in In Vitro Mutagenesis Protocols (ed. Braman, J.) 37–43 (Springer, 2002).

  44. Søndergaard, C. R., Olsson, M. H. M., Rostkowski, M. & Jensen, J. H. Improved treatment of ligands and coupling effects in empirical calculation and rationalization of pKa values. J. Chem. Theory Comput. 7, 2284–2295 (2011).

    Article  PubMed  Google Scholar 

  45. Gaussian 16, Rev. C.02 (Gaussian, 2016).

  46. Becke, A. D. A new mixing of Hartree–Fock and local density functional theories. J. Chem. Phys. 98, 1372–1377 (1993).

    Article  ADS  CAS  Google Scholar 

  47. Becke, A. D. Density‐functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).

    Article  ADS  CAS  Google Scholar 

  48. Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. Weigend, F. & Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 7, 3297–3305 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Weigend, F. Accurate coulomb-fitting basis sets for H to Rn. Phys. Chem. Chem. Phys. 8, 1057–1065 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Zhao, Y. & Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, non-covalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 120, 215–241 (2008).

    Article  CAS  Google Scholar 

  52. Marenich, A. V., Cramer, C. J. & Truhlar, D. G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 113, 6378–6396 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Chai, J.-D. & Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys. Chem. Chem. Phys. 10, 6615–6620 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by the DOE Center for Advanced Bioenergy and Bioproducts Innovation, under the auspices of the US Department of Energy, Office of Science, Office of Biological and Environmental Research (award number DE-SC0018420 to H.Z.). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. We acknowledge the Computational Chemistry Commune (http://bbs.keinsci.com/) for their support with DFT calculations. Our research benefitted from the computing resources at Delta, the National Center for Supercomputing Applications, enabled by allocation BIO230016 from the Advanced Cyberinfrastructure Coordination Ecosystem: Services & Support (ACCESS) programme, funded by National Science Foundation grants 2138259, 2138286, 2138307, 2137603 and 2138296. The Delta research computing initiative, funded by the National Science Foundation (award OCI 2005572), the State of Illinois, and a partnership between the University of Illinois at Urbana-Champaign and its National Center for Supercomputing Applications, is deeply appreciated. We are indebted to G. Jiang and H. Cui for their invaluable insights. Special thanks to L. T. Burrus and M. C. O’Dell for their organizational assistance during the project.

Author information

Authors and Affiliations

Authors

Contributions

The project was coordinated by H.Z., while H.Z. and M.L. jointly conceptualized the project and designed the research experiments. M.L. executed the experiments and computational studies. W.H. and Z.Z. were responsible for synthesizing some substrates, and Y.Y. contributed to the construction of the mutants.

Corresponding author

Correspondence to Huimin Zhao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Debabrata Maiti and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Control experiments to evaluate reaction conditions.

Reaction conditions: α-methyl styrene (8 μmol), 2-bromomethyl pyridines (4 μmol), OYE1 (1 mol % based on α-methyl styrene), GDH-105 (5 U/mL), NADP+ (1 mol% based on glucose), glucose (20 μmol), 40 μL DMSO as additives in 1 ml (total) sodium acetate buffer, 445 nm LED, 25 °C, 12 h. The yields were determined by GC-MS. The ee values were determined by HPLC.

Extended Data Fig. 2 Implementation of Quantum Chemical Cluster Approach in OYE1 Protein.

The depicted model excludes the initial substrate. Calculations were executed employing the m062x-D3/def2tzvpp (SMD, ε = 4.0) // b3lyp-D3(BJ)/def2svp (gas) computational level. During the process of geometry optimization, fixed atoms are marked with an asterisk (‘*’). Visual representations were constructed with Pymol (Version 2.5.5) and CLYview 1.0b.

Extended Data Fig. 3 Comprehensive spin density analysis covering intermediates and HAT transition states.

Utilizing Multiwfn 3.8 software, we conducted an in-depth spin density analysis. Visual representations were constructed with VMD (Version 1.9.3). The green and blue areas depict α and β spin respectively, with all amino acid residues (except N194) being omitted to ensure clarity in presentation.

Extended Data Fig. 4 In-depth experimental assessment of steric hindrance in key residues and topographic analysis.

The figure delves into the steric hindrance presented by key residues, particularly focusing on Y375A and T37A. A comprehensive topographic steric map is also provided, with %VBuried indicating the buried volume.

Supplementary information

Supplementary Information

Supplementary Methods, Figs. 1–9, Tables 1–7 and References.

Reporting Summary

Supplementary Data 1

Computational data for Cartesian coordinates of optimized structures.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Harrison, W., Zhang, Z. et al. Remote stereocontrol with azaarenes via enzymatic hydrogen atom transfer. Nat. Chem. 16, 277–284 (2024). https://doi.org/10.1038/s41557-023-01368-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-023-01368-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing