Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure and bonding of a radium coordination compound in the solid state

Abstract

The structure and bonding of radium (Ra) is poorly understood because of challenges arising from its scarcity and radioactivity. Here we report the synthesis of a molecular Ra2+ complex using 226Ra and the organic ligand dibenzo-30-crown-10, and its characterization in the solid state by single-crystal X-ray diffraction. The crystal structure of the Ra2+ complex shows an 11-coordinate arrangement comprising the 10 donor O atoms of dibenzo-30-crown-10 and that of a bound water molecule. Under identical crystallization conditions, barium (Ba2+) yielded a 10-coordinate ‘Pac-Man’-shaped structure lacking water. Furthermore, the bond distance between the Ra centre and the O atom of the coordinated water is substantially longer than would be predicted from the ionic radius of Ra2+ and by analogy with Ba2+, supporting greater water lability in Ra2+ complexes than in their Ba2+ counterparts. Barium often serves as a non-radioactive surrogate for radium, but our findings show that Ra2+ chemistry cannot always be predicted using Ba2+.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structures of the ligand and metal compounds discussed in this work.
Fig. 2: Radiolytic damage of radium crystals with time.
Fig. 3: Conformations of DB30C10 around divalent metal cations.

Similar content being viewed by others

Data availability

CCDC depositions 2244265 and 2244266 contain the supplementary crystallographic data for this paper. The crystallographic data for Sm1, Ba2 and Ba3 are also located in the CCDC under depositions 1843893, reference code KEFFIK and reference code PANDUD. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, by emailing data_request@ccdc.cam.ac.uk or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033. All data gathered in this manuscript are publicly available through the deposition CIF files.

References

  1. McDevitt, M. R. et al. Tumor therapy with targeted atomic nanogenerators. Science 294, 1537–1540 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Kratochwil, C. et al. 225Ac-PSMA-617 for PSMA-targeted α-radiation therapy of metastatic castration-resistant prostate cancer. J. Nucl. Med. 57, 1941–1944 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. Makvandi, M. et al. Alpha-emitters and targeted alpha therapy in oncology: from basic science to clinical investigations. Target. Oncol. 13, 189–203 (2018).

    Article  PubMed  Google Scholar 

  4. Thiele, N. A. & Wilson, J. J. Actinium-225 for targeted α therapy: coordination chemistry and current chelation approaches. Cancer Biother. Radiopharm. 33, 336–348 (2018).

    PubMed  PubMed Central  Google Scholar 

  5. Eychenne, R., Chérel, M., Haddad, F., Guérard, F. & Gestin, J. F. Overview of the most promising radionuclides for targeted alpha therapy: the ‘hopeful eight’. Pharmaceutics 13, 906 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hu, A. & Wilson, J. J. Advancing chelation strategies for large metal ions for nuclear medicine applications. Acc. Chem. Res. 55, 904–915 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kluetz, P. G. et al. Radium (Ra-223) dichloride injection: U.S. food and drug administration drug approval summary. Clin. Cancer Res. 20, 9–14 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. Parker, C. et al. Alpha emitter radium-223 and survival in metastatic prostate cancer. N. Engl. J. Med. 369, 213–223 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Sartor, O. et al. Effect of radium-223 dichloride on symptomatic skeletal events in patients with castration-resistant prostate cancer and bone metastases: results from a phase 3, double-blind, randomised trial. Lancet Oncol. 15, 738–746 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. Henriksen, G. et al. Targeting of osseous sites with α-emitting 223Ra: comparison with the α-emitter 89Sr in mice. J. Nucl. Med. 44, 252–259 (2003).

    CAS  PubMed  Google Scholar 

  11. Takalkar, A., Adams, S. & Subbiah, V. Radium-223 dichloride bone-targeted alpha particle therapy for hormone-refractory breast cancer metastatic to bone. Exp. Hematol. Oncol. 3, 1–7 (2014).

    Article  Google Scholar 

  12. Marques, I. A. et al. Targeted alpha therapy using radium-223: from physics to biological effects. Cancer Treat. Rev. 68, 47–54 (2018).

    Article  CAS  PubMed  Google Scholar 

  13. Chen, X., Ji, M., Fisher, D. R. & Wai, C. M. Ionizable calixarene-crown ethers with high selectivity for radium over light alkaline earth metal ions. Inorg. Chem. 38, 5449–5452 (1999).

    Article  CAS  Google Scholar 

  14. Henriksen, G., Hoff, P. & Larsen, R. H. Evaluation of potential chelating agents for radium. Appl. Radiat. Isot. 56, 667–671 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Gott, M., Steinbach, J. & Mamat, C. The radiochemical and radiopharmaceutical applications of radium. Open Chem. 14, 118–129 (2016).

    Article  CAS  Google Scholar 

  16. Freesmeyer, M., Weigand, W. & Weisheit, T. Examination of the complexation ability of different calixarene derivatives towards [223Ra]RaCl2 in a hospital radiopharmaceutical laboratory. Nuklearmedizin 57, 242–246 (2018).

    Article  PubMed  Google Scholar 

  17. Riondato, M., Pastorino, S., Duce, V., Giovannini, E. & Ciarmiello, A. Comparative radium-223 labeling with NOTA- and DOTA-somatostatin derivatives for a potential use in targeted cancer therapy. Nucl. Med. Biol. 72–73, S50–S51 (2019).

    Article  Google Scholar 

  18. Abou, D. S. et al. Towards the stable chelation of radium for biomedical applications with an 18-membered macrocyclic ligand. Chem. Sci. 12, 3733–3742 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ivanov, A. S. et al. Elucidating the coordination chemistry of the radium ion for targeted alpha therapy. Chem. Commun. 58, 9938–9941 (2022).

    Article  CAS  Google Scholar 

  20. Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32, 751–767 (1976).

    Article  ADS  Google Scholar 

  21. Weigel, F. & Trinkl, A. Crystal chemistry of radium. I. Radium halides. Radiochim. Acta 9, 36–41 (1968).

    Article  CAS  Google Scholar 

  22. Weigel, F. & Trinkle, A. Crystal chemistry of radium. II. Radium salts of the RaXO4 type (X = sulfur, selenium, chromium, molybdenum, tungsten). Radiochim. Acta 9, 140–144 (1968).

    Article  CAS  Google Scholar 

  23. Weigel, F. & Trinkl, A. Crystal chemistry of radium. III. Preparation, crystal structure, and atomic radius of metallic radium. Radiochim. Acta 10, 78–82 (1968).

    Article  CAS  Google Scholar 

  24. Weigel, F. & Trinkl, A. Crystal chemistry of radium. IV. Radium sulfide and selenide. Radiochim. Acta 12, 29–31 (1969).

    Article  CAS  Google Scholar 

  25. Weigel, F. & Trinkl, A. On the crystal chemistry of radium V. Various radium salts of inorganic anions. Radiochim. Acta 19, 199–202 (1973).

    Article  CAS  Google Scholar 

  26. Matyskin, A. V., Ylmen, R., Lagerkvist, P., Ramebäck, H. & Ekberg, C. Crystal structure of radium sulfate: an X-ray powder diffraction and density functional theory study. J. Solid State Chem. 253, 15–20 (2017).

    Article  ADS  CAS  Google Scholar 

  27. Stanjek, H. & Häusler, W. Basics of X-ray diffraction. Hyperfine Interact 154, 107–119 (2004).

    Article  ADS  CAS  Google Scholar 

  28. Thiele, N. A. et al. An eighteen‐membered macrocyclic ligand for actinium‐225 targeted alpha therapy. Angew. Chem. Int. Ed. 129, 14904–14909 (2017).

    Article  ADS  Google Scholar 

  29. Price, E. W. & Orvig, C. Matching chelators to radiometals for radiopharmaceuticals. Chem. Soc. Rev. 43, 260–290 (2014).

    Article  CAS  PubMed  Google Scholar 

  30. Okoye, N. C., Baumeister, J. E., Khosroshahi, F. N., Hennkens, H. M. & Jurisson, S. S. Chelators and metal complex stability for radiopharmaceutical applications. Radiochim. Acta 107, 1087–1120 (2019).

    Article  CAS  Google Scholar 

  31. Yang, H. et al. Harnessing alpha-emitting radionuclides for therapy: radiolabeling method review. J. Nucl. Med. 63, 5–13 (2021).

    Article  PubMed  Google Scholar 

  32. Yamaguchi, A. et al. Extended X-ray absorption fine structure spectroscopy measurements and ab initio molecular dynamics simulations reveal the hydration structure of the radium(II) ion. iScience 25, 104763 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bai, Z. et al. Radium revisited: revitalization of the coordination chemistry of nature’s largest +2 cation. Inorg. Chem. 62, 8478–8481 (2023).

    Article  CAS  PubMed  Google Scholar 

  34. Bush, M. A. & Truter, M. R. Crystal structures of complexes between alkali-metal salts and cyclic polyethers. Part IV. The crystal structures of dibenzo-30-crown-10 (2,3:17,18-dibenzo-1,4,7,10,13,16,19,22,25,28-decaoxacyclotriaconta-2,17-diene) and of its complex with potassium iodide. J. Chem. Soc. Perkin Trans. 2, 345–350 (1972).

    Article  Google Scholar 

  35. Owen, J. D., Truter, M. R. & Wingfield, J. N. Reaction between dibenzo-30-crown-10 and potassium thiocyanate; structures of the 1:1 complexes, anhydrous and monohydrated, [K(C28H40O10)]+[SCN] and [K(C28H40O10)]+[SCN]∙H2O. Acta Crystallogr. C 40, 1515–1520 (1984).

    Article  ADS  Google Scholar 

  36. Li, Z., Xu, H., Wang, X. & Fan, Y. Crystal and molecular structure of dibenzo-30-crown-10-barium complex with bismuth trichloride. Jiegou 8, 273–277 (1989).

    CAS  Google Scholar 

  37. Fan, Y., Xu, H., Wei, Y. & Hu, Q. Crystal and molecular structure of [Ba(DB30C10)(H2O)]2[Co(NCS4)]2H2O. Shandong Daxue Xuebao, Ziran Kexueban 26, 129–138 (1991).

    CAS  Google Scholar 

  38. White, F. D. et al. Molecular and electronic structure, and hydrolytic reactivity of a samarium(II) crown ether complex. Inorg. Chem. 58, 3457–3465 (2019).

    Article  CAS  PubMed  Google Scholar 

  39. Cowie, B. E., Douair, I., Maron, L., Love, J. B. & Arnold, P. L. Selective oxo ligand functionalisation and substitution reactivity in an oxo/catecholate-bridged UIV/UIV Pacman complex. Chem. Sci. 11, 7144–7157 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pettit, W. A. & Baenziger, N. C. Barium (cryptand-222B)Cl2∙6H2O. Acta Crystallogr. C 50, 221–224 (1994).

    Article  ADS  Google Scholar 

  41. Rodriguez-Cruz, S. E., Jockusch, R. A. & Williams, E. R. Hydration energies and structures of alkaline earth metal ions, M2+(H2O)(n), n = 5–7, M = Mg, Ca, Sr, and Ba. J. Am. Chem. Soc. 121, 8898–8906 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chekhlov, A. N. Crystal structure of the diaqua(1,10-diaza-18-crown-6)(tetrafluorosuccinato-O)barium complex. Russ. J. Coord. 28, 137–142 (2002).

    Article  CAS  Google Scholar 

  43. Chekhlov, A. N. Crystal structure of an unusual hydrated complex of 1,4,7,10,13-pentaoxacyclohexadecane-14,16-dione with calcium thiocyanate. Russ. J. Coord. 28, 163–169 (2002).

    Article  CAS  Google Scholar 

  44. Chekhlov, A. N. Twinned and disordered crystal structure of solvated bis[bqua(2.2.2-cryptand)calcium] hexa(isothiocyanato)calciate. Russ. J. Coord. 28, 454–460 (2002).

    Article  CAS  Google Scholar 

  45. Chekhlov, A. N. Crystal structure of diaqua(2.2.2-cryptand)strontium bis(thiocyanate). J. Struct. Chem. 43, 501–506 (2002).

    Article  CAS  Google Scholar 

  46. Simms, M. E. et al. Reining in radium for nuclear medicine: extra-large chelator development for an extra-large ion. Inorg. Chem. https://doi.org/10.1021/acs.inorgchem.3c02985 (2023).

    Article  PubMed  Google Scholar 

  47. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. C 71, 3–8 (2015).

    Article  ADS  Google Scholar 

  48. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 42, 339–341 (2009).

    Article  ADS  CAS  Google Scholar 

  49. Cary, S. K., Boland, K. S., Cross, J. N., Kozimor, S. A. & Scott, B. L. Advances in containment methods and plutonium recovery strategies that led to the structural characterization of plutonium(IV) tetrachloride tris-diphenylsulfoxide, PuCl4(OSPh2)3. Polyhedron 126, 220–226 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The staff of the Medical Isotopes Development Group and the Building 3047 Operations Group at Oak Ridge National Laboratory are thanked for their 226Ra production, purification and dispensing efforts. This research was supported by the Laboratory Directed Research and Development (N.A.T.) programme of Oak Ridge National Laboratory. The 226Ra used in this research was supplied by the United States Department of Energy Isotope Program, managed by the Office of Isotope R&D and Production. The manuscript was produced by UT–Battelle, LLC under contract no. DE-AC05-00OR22725 with the United States Department of Energy. The publisher acknowledges the United States Government licence to provide public access under the Department of Energy (DOE) Public Access Plan (https://energy.gov/downloads/doe-public-access-plan). The funders had no role in the study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

F.D.W. constructed and executed the preparation, synthesis, imaging and characterization of Ra/Ba complexes. N.A.T. developed the concept of Ra scXRD and acquired and prepared the stock solution of 226Ra. S.K.C. aided in crystal manipulations for scXRD and 226Ra imaging experiments. M.E.S. aided in preparing the radiological hood for 226Ra work, prepping the 226Ra stock solution and setting up the 226Ra reaction.

Corresponding authors

Correspondence to Frankie D. White or Nikki A. Thiele.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Rebecca Abergel, Caterina Ramogida and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1 and 2, Tables 1 and 2 and discussion of CIF B-alerts.

Supplementary Data 1

ScXRD structure of Ba1.

Supplementary Data 2

ScXRD structure of Ra1.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

White, F.D., Thiele, N.A., Simms, M.E. et al. Structure and bonding of a radium coordination compound in the solid state. Nat. Chem. 16, 168–172 (2024). https://doi.org/10.1038/s41557-023-01366-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-023-01366-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing