Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Microbubble dynamics

Electrolyte type affects electrochemical bubble formation

Gas bubble accumulation at interfaces is a barrier to achieving more efficient electrochemical devices. A clever model system to understand bubble formation during electrochemical hydrogen evolution now reveals similarities between the forces at play during their detachment from the catalyst surface and those involved in wine climbing up a glass.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Hydrogen bubble detachment dynamics and characteristic force balance with analogy to wine tears, both of which rely on Marangoni flow forces.

References

  1. Zhao, Z. et al. Matter 3, 1774–1790 (2020).

    Article  Google Scholar 

  2. Park, S. et al. Nat. Chem. https://doi.org/10.1038/s41557-023-01294-y (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Hyde, A. et al. Org. Process Res. Dev. 21, 1355–1370 (2017).

    Article  CAS  Google Scholar 

  4. Levich, V. G. & Krylov, V. S. Annu. Rev. Fluid Mech. 1, 293–316 (1969).

    Article  Google Scholar 

  5. Marcus, Y. Langmuir 29, 2881–2888 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Benouaguef, I. et al. J. Fluid Mech. 922, A23 (2021).

    Article  CAS  Google Scholar 

  7. Bozorgmerh, B. & Murray, B. T. ACS Omega 6, 12577–12590 (2021).

    Article  Google Scholar 

  8. Strmcnik, D. et al. J. Phys. Chem. Lett. 2, 2733–2736 (2011).

    Article  CAS  Google Scholar 

  9. Waegele, M. M., Gunathunge, C. M., Li, J. & Li, X. J. Chem. Phys. 151, 160902 (2019).

    Article  PubMed  Google Scholar 

  10. Liu, Y., Kawaguchi, T., Pierce, M. S., Komanicky, V. & You, H. J. Phys. Chem. Lett. 9, 1265–1271 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Tripkovic, D. V., Strmcnik, D., Vliet, D., van der Stamenkovic, V. & Markovic, N. M. Faraday Discuss. 140, 25–40 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Kamat, G. A. et al. Commun. Chem. 5, 1–10 (2022).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michaela Burke Stevens.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamat, G.A., Burke Stevens, M. Electrolyte type affects electrochemical bubble formation. Nat. Chem. 15, 1488–1489 (2023). https://doi.org/10.1038/s41557-023-01351-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-023-01351-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing