Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Solutal Marangoni effect determines bubble dynamics during electrocatalytic hydrogen evolution

Abstract

Understanding and manipulating gas bubble evolution during electrochemical water splitting is a crucial strategy for optimizing the electrode/electrolyte/gas bubble interface. Here gas bubble dynamics are investigated during the hydrogen evolution reaction on a well-defined platinum microelectrode by varying the electrolyte composition. We find that the microbubble coalescence efficiency follows the Hofmeister series of anions in the electrolyte. This dependency yields very different types of H2 gas bubble evolution in different electrolytes, ranging from periodic detachment of a single H2 gas bubble in sulfuric acid to aperiodic detachment of small H2 gas bubbles in perchloric acid. Our results indicate that the solutal Marangoni convection, induced by the anion concentration gradient developing during the reaction, plays a critical role at practical current density conditions. The resulting Marangoni force on the H2 gas bubble and the bubble departure diameter therefore depend on how surface tension varies with concentration for different electrolytes. This insight provides new avenues for controlling bubble dynamics during electrochemical gas bubble formation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Anion effects on HER current oscillation and H2 gas bubble evolution.
Fig. 2: Anion effects during single H2 gas bubble growth.
Fig. 3: Anion effects on single H2 gas bubble detachment.
Fig. 4: Schematic illustration of the thermal and solutal Marangoni effects on H2 gas bubble evolution.
Fig. 5: HER current oscillations in mixed electrolytes of H2SO4 and HCl.
Fig. 6: Surface tension change ratio due to the temperature and ion concentration (σT = ∂σ/∂T and σC = ∂σ/∂C) as function of the applied potential.

Similar content being viewed by others

Data availability

All relevant data generated and analysed during this study are included in this article and its Supplementary Information. Data for the main figures are available in Zenodo (https://doi.org/10.5281/zenodo.7867261).

References

  1. Turner, J. A. Sustainable hydrogen production. Science 305, 972–974 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Ardo, S. et al. Pathways to electrochemical solar-hydrogen technologies. Energy Environ. Sci. 11, 2768–2783 (2018).

    Article  CAS  Google Scholar 

  3. Buttler, A. & Spliethoff, H. Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: a review. Renew. Sustain. Energy Rev. 82, 2440–2454 (2018).

    Article  CAS  Google Scholar 

  4. Shih, A. J. et al. Water electrolysis. Nat. Rev. Methods Primers 2, 84 (2022).

    Article  CAS  Google Scholar 

  5. Chatenet, M. et al. Water electrolysis: from textbook knowledge to the latest scientific strategies and industrial developments. Chem. Soc. Rev. 51, 4583–4762 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Seh, Z. W. et al. Combining theory and experiment in electrocatalysis: insights into materials design. Science 355, eaad4998 (2017).

    Article  PubMed  Google Scholar 

  7. Dubouis, N. & Grimaud, A. The hydrogen evolution reaction: from material to interfacial descriptors. Chem. Sci. 10, 9165–9181 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ledezma-Yanez, I. et al. Interfacial water reorganization as a pH-dependent descriptor of the hydrogen evolution rate on platinum electrodes. Nat. Energy 2, 1–7 (2017).

    Article  Google Scholar 

  9. Li, P. et al. Hydrogen bond network connectivity in the electric double layer dominates the kinetic pH effect in hydrogen electrocatalysis on Pt. Nat. Catal. 5, 900–911 (2022).

    Article  CAS  Google Scholar 

  10. Diaz-Morales, O., Ferrus-Suspedra, D. & Koper, M. T. M. The importance of nickel oxyhydroxide deprotonation on its activity towards electrochemical water oxidation. Chem. Sci. 7, 2639–2645 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kamat, G. A. et al. Acid anion electrolyte effects on platinum for oxygen and hydrogen electrocatalysis. Commun. Chem. 5, 20 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Garcia, A. C., Touzalin, T., Nieuwland, C., Perini, N. & Koper, M. T. M. Enhancement of oxygen evolution activity of nickel oxyhydroxide by electrolyte alkali cations. Angew. Chem. Int. Ed. 58, 12999–13003 (2019).

    Article  CAS  Google Scholar 

  13. Dukovic, J. & Tobias, C. W. The influence of attached bubbles on potential drop and current distribution at gas-evolving electrodes. J. Electrochem. Soc. 134, 331–343 (1987).

    Article  CAS  Google Scholar 

  14. Gabrielli, C., Huet, F. & Nogueira, R. P. Fluctuations of concentration overpotential generated at gas-evolving electrodes. Electrochim. Acta 50, 3726–3736 (2005).

    Article  CAS  Google Scholar 

  15. Vogt, H. & Balzer, R. J. The bubble coverage of gas-evolving electrodes in stagnant electrolytes. Electrochim. Acta 50, 2073–2079 (2005).

    Article  CAS  Google Scholar 

  16. Vogt, H. The voidage problem in gas-electrolyte dispersions. J. Appl. Electrochem. 17, 419–426 (1987).

    Article  CAS  Google Scholar 

  17. Fouad, M. G. & Sedahmed, G. H. Mass transfer at horizontal gas-evolving electrodes. Electrochim. Acta 18, 55–58 (1973).

    Article  CAS  Google Scholar 

  18. Xu, W., Lu, Z., Sun, X., Jiang, L. & Duan, X. Superwetting electrodes for gas-involving electrocatalysis. Acc. Chem. Res. 51, 1590–1598 (2018).

    Article  CAS  PubMed  Google Scholar 

  19. Angulo, A., van der Linde, P., Gardeniers, H., Modestino, M. & Fernández Rivas, D. Influence of bubbles on the energy conversion efficiency of electrochemical reactors. Joule 4, 555–579 (2020).

    Article  CAS  Google Scholar 

  20. Zhao, X., Ren, H. & Luo, L. Gas bubbles in electrochemical gas evolution reactions. Langmuir 35, 5392–5408 (2019).

    Article  CAS  PubMed  Google Scholar 

  21. Yang, S. et al. Electrolytically generated nanobubbles on highly orientated pyrolytic graphite surfaces. Langmuir 25, 1466–1474 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. van der Linde, P. et al. Electrolysis-driven and pressure-controlled diffusive growth of successive bubbles on microstructured surfaces. Langmuir 33, 12873–12886 (2017).

    Article  PubMed  Google Scholar 

  23. Luo, L. & White, H. S. Electrogeneration of single nanobubbles at sub-50-nm-radius platinum nanodisk electrodes. Langmuir 29, 11169–11175 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Soto, A. M. et al. The nucleation rate of single O2 nanobubbles at Pt nanoelectrodes. Langmuir 34, 7309–7318 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. German, S. R., Edwards, M. A., Ren, H. & White, H. S. Critical nuclei size, rate, and activation energy of H2 gas nucleation. J. Am. Chem. Soc. 140, 4047–4053 (2018).

    Article  CAS  PubMed  Google Scholar 

  26. Yang, X., Baczyzmalski, D., Cierpka, C., Mutschke, G. & Eckert, K. Marangoni convection at electrogenerated hydrogen bubbles. Phys. Chem. Chem. Phys. 20, 11542–11548 (2018).

    Article  CAS  PubMed  Google Scholar 

  27. Massing, J. et al. Thermocapillary convection during hydrogen evolution at microelectrodes. Electrochim. Acta 297, 929–940 (2019).

    Article  CAS  Google Scholar 

  28. Bashkatov, A., Hossain, S. S., Yang, X., Mutschke, G. & Eckert, K. Oscillating hydrogen bubbles at Pt microelectrodes. Phys. Rev. Lett. 123, 214503 (2019).

    Article  CAS  PubMed  Google Scholar 

  29. Lohse, D. & Zhang, X. Surface nanobubbles and nanodroplets. Rev. Mod. Phys. 87, 981 (2015).

    Article  CAS  Google Scholar 

  30. Scriven, L. E. & Sternling, C. V. The Marangoni effects. Nature 187, 186–188 (1960).

    Article  Google Scholar 

  31. Lohse, D. & Zhang, X. Physicochemical hydrodynamics of droplets out of equilibrium. Nat. Rev. Phys. 2, 426–443 (2020).

    Article  Google Scholar 

  32. Lamy-Pitara, E., El Mouahid, S. & Barbier, J. Effect of anions on catalytic and electrocatalytic hydrogenations and on the electrocatalytic oxidation and evolution of hydrogen on platinum. Electrochim. Acta 45, 4299–4308 (2000).

    Article  CAS  Google Scholar 

  33. de Groot, M. T. & Koper, M. T. M. The influence of nitrate concentration and acidity on the electrocatalytic reduction of nitrate on platinum. J. Electroanal. Chem. 562, 81–94 (2004).

    Article  Google Scholar 

  34. Fernandez, D., Maurer, P., Martine, M., Coey, J. M. D. & Möbius, M. E. Bubble formation at a gas-evolving microelectrode. Langmuir 30, 13065–13074 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. Zhang, Y. & Cremer, P. S. Interactions between macromolecules and ions: the Hofmeister series. Curr. Opin. Chem. Biol. 10, 658–663 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Pegram, L. M. & Record, M. T. Hofmeister salt effects on surface tension arise from partitioning of anions and cations between bulk water and the air–water interface. J. Phys. Chem. B 111, 5411–5417 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Prince, M. J. & Blanch, H. W. Bubble coalescence and break‐up in air‐sparged bubble columns. AlChE J. 36, 1485–1499 (1990).

    Article  CAS  Google Scholar 

  38. Liao, Y. & Lucas, D. A literature review on mechanisms and models for the coalescence process of fluid particles. Chem. Eng. Sci. 65, 2851–2864 (2010).

    Article  CAS  Google Scholar 

  39. Craig, V. S. & Henry, C. L. Specific Ion Effects (World Scientific, 2010).

  40. Craig, V. S. J., Ninham, B. W. & Pashley, R. M. The effect of electrolytes on bubble coalescence in water. J. Phys. Chem. 97, 10192–10197 (1993).

    Article  CAS  Google Scholar 

  41. Monzon, L. M. A., Gillen, A. J., Mobius, M. E. & Coey, J. M. D. Effect of tetraalkylammonium cations on gas coalescence at a hydrogen-evolving microelectrode. Langmuir 31, 5738–5747 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. Weissenborn, P. K. & Pugh, R. J. Surface tension of aqueous solutions of electrolytes: relationship with ion hydration, oxygen solubility, and bubble coalescence. J. Colloid Interface Sci. 184, 550–563 (1996).

    Article  CAS  PubMed  Google Scholar 

  43. Firouzi, M., Howes, T. & Nguyen, A. V. A quantitative review of the transition salt concentration for inhibiting bubble coalescence. Adv. Colloid Interface Sci. 222, 305–318 (2015).

    Article  CAS  PubMed  Google Scholar 

  44. Chen, Q., Luo, L., Faraji, H., Feldberg, S. W. & White, H. S. Electrochemical measurements of single H2 nanobubble nucleation and stability at Pt nanoelectrodes. J. Phys. Chem. Lett. 5, 3539–3544 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. Newton, M. R. et al. Anisotropic diffusion in face-centered cubic opals. Nano Lett. 4, 875–880 (2004).

    Article  CAS  Google Scholar 

  46. Brandon, N. P. & Kelsall, G. H. Growth kinetics of bubbles electrogenerated at microelectrodes. J. Appl. Electrochem. 15, 475–484 (1985).

    Article  CAS  Google Scholar 

  47. Wang, Y. et al. Vapor and gas-bubble growth dynamics around laser-irradiated, water-immersed plasmonic nanoparticles. ACS Nano 11, 2045–2051 (2017).

    Article  CAS  PubMed  Google Scholar 

  48. Yang, X., Karnbach, F., Uhlemann, M., Odenbach, S. & Eckert, K. Dynamics of single hydrogen bubbles at a platinum microelectrode. Langmuir 31, 8184–8193 (2015).

    Article  CAS  PubMed  Google Scholar 

  49. Hossain, S. S., Bashkatov, A., Yang, X., Mutschke, G. & Eckert, K. Force balance of hydrogen bubbles growing and oscillating on a microelectrode. Phys. Rev. E 106, 035105 (2022).

    Article  CAS  PubMed  Google Scholar 

  50. Gao, X., Lee, J. & White, H. S. Natural convection at microelectrodes. Anal. Chem. 67, 1541–1545 (1995).

    Article  CAS  Google Scholar 

  51. Brandon, N. P., Kelsall, G. H., Levine, S. & Smith, A. L. Interfacial electrical properties of electrogenerated bubbles. J. Appl. Electrochem. 15, 485–493 (1985).

    Article  CAS  Google Scholar 

  52. Zeng, B. et al. Periodic bouncing of a plasmonic bubble in a binary liquid by competing solutal and thermal Marangoni forces. Proc. Natl Acad. Sci. USA 118, e2103215118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Meulenbroek, A. M., Vreman, A. W. & Deen, N. G. Competing Marangoni effects form a stagnant cap on the interface of a hydrogen bubble attached to a microelectrode. Electrochim. Acta 385, 138298 (2021).

    Article  CAS  Google Scholar 

  54. Hossain, S. S., Mutschke, G., Bashkatov, A. & Eckert, K. The thermocapillary effect on gas bubbles growing on electrodes of different sizes. Electrochim. Acta 353, 136461 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research received funding from the Dutch Research Council (NWO) in the framework of the ENW PPP Fund for the top sectors, from the Ministry of Economic Affairs in the framework of the PPS-toeslagregeling (grant number 741.019.201) and from the Advanced Research Center Chemical Building Blocks Consortium (ARC CBBC), under the project of New Chemistry for a Sustainable Future (project number 2021.038.C.UT.14). Additionally, the research is funded by Shell, Nobian and Nouryon. S.P. acknowledges the support by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2021R1A6A3A14039678). D.K., D.L. and M.T.M.K. received funding from the European Research Council (ERC) (BU-PACT grant agreement number 950111, ERC Advanced grant number 740479-DDD and ERC Advanced Grant ‘FRUMKIN’ number 101019998, respectively). We thank A. Bashkatov for insightful discussions on the subject.

Author information

Authors and Affiliations

Authors

Contributions

S.P. and M.T.M.K. conceived the project. S.P., D.K. and M.T.M.K. designed the experiments. S.P. and O.v.d.H. carried out electrochemical characterization. S.P., L.L., Ç.D., D.L. and D.K. carried out bubble dynamics analysis. All authors read and commented on the manuscript. All authors approved the final version of the manuscript.

Corresponding authors

Correspondence to Dominik Krug or Marc T. M. Koper.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1 and 2, Figs. 1–17, Table 1 and References.

Supplementary Video 1

H2 gas bubble evolution in 1 M H2SO4 at −0.16 VRHE.

Supplementary Video 2

H2 gas bubble evolution in 1 M HCl at −0.16 VRHE.

Supplementary Video 3

H2 gas bubble evolution in 1 M HNO3 at −0.16 VRHE.

Supplementary Video 4

H2 gas bubble evolution in 1 M HClO4 at −0.16 VRHE.

Supplementary Video 5

H2 microbubble coalescence at the initiation of a cycle in 1 M HCl.

Supplementary Video 6

H2 microbubble coalescence differences in different conditions.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, S., Liu, L., Demirkır, Ç. et al. Solutal Marangoni effect determines bubble dynamics during electrocatalytic hydrogen evolution. Nat. Chem. 15, 1532–1540 (2023). https://doi.org/10.1038/s41557-023-01294-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-023-01294-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing