Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A trivalent 4f complex with two bis-silylamide ligands displaying slow magnetic relaxation

Abstract

The best-performing single-molecule magnets (SMMs) have historically relied on pseudoaxial ligands delocalized across several coordinated atoms. This coordination environment has been found to elicit strong magnetic anisotropy, but lanthanide-based SMMs with low coordination numbers have remained synthetically elusive species. Here we report a cationic 4f complex bearing only two bis-silylamide ligands, Yb(III)[{N(SiMePh2)2}2][Al{OC(CF3)3}4], which exhibits slow relaxation of its magnetization. The combination of the bulky silylamide ligands and weakly coordinating [Al{OC(CF3)3}4] anion provides a sterically hindered environment that suitably stabilizes the pseudotrigonal geometry necessary to elicit strong ground-state magnetic anisotropy. The resolution of the mJ states by luminescence spectroscopy is supported by ab initio calculations, which show a large ground-state splitting of approximately 1,850 cm−1. These results provide a facile route to access a bis-silylamido Yb(III) complex, and further underline the desirability of axially coordinated ligands with well-localized charges for high-performing SMMs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Preparation and single-crystal X-ray structures of 1 and 2.
Fig. 2: Dynamic magnetic susceptibility data and relaxation mechanism fits for 2.
Fig. 3: Photoluminescence spectroscopy of 2.
Fig. 4: Calculated direction of the main magnetic axes for 2.

Similar content being viewed by others

Data availability

Crystallographic data for the structures reported in this article have been deposited at the Cambridge Crystallographic Data Centre, under deposition numbers CCDC 2222783 (1 at 200 K), 2222786 (2 at 200 K) and 2222787 (2 at 90 K). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/. All other data generated or analysed are made available as Source Data or in the Supplementary Information. Source data are provided with this paper.

References

  1. Leuenberger, M. N. & Loss, D. Quantum computing in molecular magnets. Nature 410, 789–793 (2001).

    CAS  PubMed  Google Scholar 

  2. Ardavan, A. et al. Will spin-relaxation times in molecular magnets permit quantum information processing? Phys. Rev. Lett. 98, 057201 (2007).

    PubMed  Google Scholar 

  3. Ungur, L. & Chibotaru, L. F. Magnetic anisotropy in the excited states of low symmetry lanthanide complexes. Phys. Chem. Chem. Phys. 13, 20086 (2011).

    CAS  PubMed  Google Scholar 

  4. Ungur, L. & Chibotaru, L. F. Strategies toward high-temperature lanthanide-based single-molecule magnets. Inorg. Chem. 55, 10043–10056 (2016).

    CAS  PubMed  Google Scholar 

  5. Chilton, N. F. Design criteria for high-temperature single-molecule magnets. Inorg. Chem. 54, 2097–2099 (2015).

    CAS  PubMed  Google Scholar 

  6. Donati, F. et al. Magnetic remanence in single atoms. Science 352, 318–321 (2016).

    CAS  PubMed  Google Scholar 

  7. Liu, F. et al. Single molecule magnet with an unpaired electron trapped between two lanthanide ions inside a fullerene. Nat. Commun. 8, 16098 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Goodwin, C. A. P., Ortu, F., Reta, D., Chilton, N. F. & Mills, D. P. Molecular magnetic hysteresis at 60 Kelvin in dysprosocenium. Nature 548, 439–442 (2017).

    CAS  PubMed  Google Scholar 

  9. Guo, F.-S. et al. A dysprosium metallocene single-molecule magnet functioning at the axial limit. Angew. Chem. Int. Ed. 56, 11445–11449 (2017).

    CAS  Google Scholar 

  10. Gould, C. A. et al. Synthesis and magnetism of neutral, linear metallocene complexes of terbium(II) and dysprosium(II). J. Am. Chem. Soc. 141, 12967–12973 (2019).

    CAS  PubMed  Google Scholar 

  11. Guo, F.-S. et al. Magnetic hysteresis up to 80 Kelvin in a dysprosium metallocene single-molecule magnet. Science 362, 1400–1403 (2018).

    CAS  PubMed  Google Scholar 

  12. Willson, S. P. & Andrews, L. Characterization of the reaction products of laser-ablated late lanthanide metal atoms with molecular oxygen: infrared spectra of LnO, LnO+, LnO, LnO2, LnO2, LnO3, and (LnO)2 in solid argon. J. Phys. Chem. A 103, 6972–6983 (1999).

    CAS  Google Scholar 

  13. Goodwin, C. A. P. et al. Heteroleptic samarium(III) halide complexes probed by fluorescence-detected L3-edge X-ray absorption spectroscopy. Dalton Trans. 47, 10613–10625 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Goodwin, C. A. P. et al. Physicochemical properties of near-linear lanthanide(II) bis(silylamide) complexes (Ln = Sm, Eu, Tm, Yb). Inorg. Chem. 55, 10057–10067 (2016).

    CAS  PubMed  Google Scholar 

  15. Chilton, N. F., Goodwin, C. A. P., Mills, D. P. & Winpenny, R. E. P. The first near-linear bis(amide) f-block complex: a blueprint for a high temperature single molecule magnet. Chem. Commun. 51, 101–103 (2015).

    CAS  Google Scholar 

  16. Eaborn, C., Hitchcock, P. B., Izod, K., Lu, Z.-R. & Smith, J. D. Alkyl Derivatives of europium(+2) and ytterbium(+2). Crystal structures of Eu[C(SiMe3)3]2, Yb[C(SiMe3)2(SiMe2CH=CH2)]I·OEt2 and Yb[C(SiMe3)2(SiMe2OMe)]I·OEt2. Organometallics 15, 4783–4790 (1996).

  17. Eaborn, C., Hitchcock, P. B., Izod, K. & Smith, J. D. A monomeric solvent-free bent lanthanide dialkyl and a lanthanide analog of a Grignard reagent. Crystal structures of Yb{C(SiMe3)3}2 and [Yb{C(SiMe3)3}I·OEt2]2. J. Am. Chem. Soc. 116, 12071–12072 (1994).

    CAS  Google Scholar 

  18. Cotton, S. in Lanthanides and Actinides (ed. Cotton, S.) 10–84 (Macmillan, 1991).

  19. Day, B. M. et al. Rare-earth cyclobutadienyl sandwich complexes: synthesis, structure and dynamic magnetic properties. Chem. Eur. J. 24, 16779–16782 (2018).

    CAS  PubMed  Google Scholar 

  20. Evans, W. J., Davis, B. L. & Ziller, J. W. Synthesis and structure of tris(alkyl- and silyl-tetramethylcyclopentadienyl) complexes of lanthanum. Inorg. Chem. 40, 6341–6348 (2001).

    CAS  PubMed  Google Scholar 

  21. Meng, Y.-S., Zhang, Y.-Q., Wang, Z.-M., Wang, B.-W. & Gao, S. Weak ligand-field effect from ancillary ligands on enhancing single-ion magnet performance. Chem. Eur. J. 22, 12724–12731 (2016).

    CAS  PubMed  Google Scholar 

  22. Nicholas, H. M. et al. Electronic structures of bent lanthanide(III) complexes with two N-donor ligands. Chem. Sci. 10, 10493–10502 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu, J.-L. et al. A six-coordinate ytterbium complex exhibiting easy-plane anisotropy and field-induced single-ion magnet behavior. Inorg. Chem. 51, 8538–8544 (2012).

    CAS  PubMed  Google Scholar 

  24. Pointillart, F., Cador, O., Le Guennic, B. & Ouahab, L. Uncommon lanthanide ions in purely 4f single molecule magnets. Coord. Chem. Rev. 346, 150–175 (2017).

    CAS  Google Scholar 

  25. Bartlett, R. A. & Power, P. P. Two-coordinate, nonlinear, crystalline d6 and d7 complexes: syntheses and structures of M{N(SiMePh2)2}2, M = Fe or Co. J. Am. Chem. Soc. 109, 7563–7564 (1987).

    CAS  Google Scholar 

  26. Chen, H., Bartlett, R. A., Dias, H. V. R., Olmstead, M. M. & Power, P. P. The use of very crowded silylamide ligands –N(SiMenPh3−n)2 (n = 0, 1, or 2) to synthesize crystalline, two-coordinate, derivatives to manganese(II), iron(II), and cobalt(II) and the free ion [Ph3SiNSiPh3]. J. Am. Chem. Soc. 111, 4338–4345 (1989).

    CAS  Google Scholar 

  27. Power, P. P., Ruhlandt-Senge, K. & Shoner, S. C. Synthesis and characterization of the isoelectronic d10 species bis[bis(methyldiphenylsilyl)amido]cuprate(1−) and -zinc. Inorg. Chem. 30, 5013–5015 (1991).

    CAS  Google Scholar 

  28. Bartlett, R. A., Olmstead, M. M. & Power, P. P. Structural characterization of the ‘magnesylamine’ [(Et2O)Mg(Cl){N(SiMe3)2}]2 and the two-coordinate magnesium amide Mg{N(SiMePh2)2}2. Inorg. Chem. 33, 4800–4803 (1994).

    CAS  Google Scholar 

  29. Leng, J.-D., Goodwin, C. A. P., Vitorica-Yrezabal, I. J. & Mills, D. P. Salt metathesis routes to homoleptic near-linear Mg(II) and Ca(II) bulky bis(silyl)amide complexes. Dalton Trans. 47, 12526–12533 (2018).

    CAS  PubMed  Google Scholar 

  30. Demir, S., Zadrozny, J. M. & Long, J. R. Large spin-relaxation barriers for the low-symmetry organolanthanide complexes [Cp*2Ln(BPh4)] (Cp* = pentamethylcyclopentadienyl; Ln = Tb, Dy). Chem. Eur. J. 20, 9524–9529 (2014).

    CAS  PubMed  Google Scholar 

  31. Day, B. M., Guo, F.-S. & Layfield, R. A. Cyclopentadienyl ligands in lanthanide single-molecule magnets: one ring to rule them all? Acc. Chem. Res. 51, 1880–1889 (2018).

    CAS  PubMed  Google Scholar 

  32. McClain, K. R. et al. High-temperature magnetic blocking and magneto-structural correlations in a series of dysprosium(III) metallocenium single-molecule magnets. Chem. Sci. 9, 8492–8503 (2018).

    Google Scholar 

  33. Hitchcock, P. B., Lappert, M. F., Smith, R. G., Bartlett, R. A. & Power, P. P. Synthesis and structural characterisation of the first neutral homoleptic lanthanide metal(III) alkyls: [LnR3] [Ln = La or Sm, R = CH(SiMe3)2]. Chem. Commun. 1007–1009 (1988).

  34. Clark, D. L., Gordon, J. C., Hay, P. J., Martin, R. L. & Poli, R. DFT study of tris(bis(trimethylsilyl)methyl)lanthanum and -samarium. Organometallics 21, 5000–5006 (2002).

    CAS  Google Scholar 

  35. Perrin, L., Maron, L., Eisenstein, O. & Lappert, M. F. γ Agostic C–H or β agostic Si–C bonds in La{CH(SiMe3)2}3? A DFT study of the role of the ligand. New J. Chem. 27, 121–127 (2003).

    CAS  Google Scholar 

  36. Boyde, N. C., Chmely, S. C., Hanusa, T. P., Rheingold, A. L. & Brennessel, W. W. Structural distortions in M[E(SiMe3)2]3 complexes (M = group 15, f-element; E = N, CH): is three a crowd? Inorg. Chem. 53, 9703–9714 (2014).

    CAS  PubMed  Google Scholar 

  37. Goodwin, C. A. P. et al. Homoleptic trigonal planar lanthanide complexes stabilized by superbulky silylamide ligands. Organometallics 34, 2314–2325 (2015).

    CAS  Google Scholar 

  38. Bryan, A. M., Merrill, W. A., Reiff, W. M., Fettinger, J. C. & Power, P. P. Synthesis, structural, and magnetic characterization of linear and bent geometry cobalt(II) and nickel(II) amido complexes: evidence of very large spin–orbit coupling effects in rigorously linear coordinated Co2+. Inorg. Chem. 51, 3366–3373 (2012).

    CAS  PubMed  Google Scholar 

  39. Weller, R., Ruppach, L., Shlyaykher, A., Tambornino, F. & Werncke, C. G. Homoleptic quasilinear metal(I/II) silylamides of Cr–Co with phenyl and allyl functions—impact of the oxidation state on secondary ligand interactions. Dalton Trans. 50, 10947–10963 (2021).

    CAS  PubMed  Google Scholar 

  40. Weller, R. et al. Quasilinear 3d-metal(I) complexes [KM(N(Dipp)SiR3)2] (M = Cr–Co)—structural diversity, solution state behaviour and reactivity. Dalton Trans. 50, 4890–4903 (2021).

    CAS  PubMed  Google Scholar 

  41. Occhipinti, G. et al. Synthesis and stability of homoleptic metal(III) tetramethylaluminates. J. Am. Chem. Soc. 133, 6323–6337 (2011).

    CAS  PubMed  Google Scholar 

  42. Harder, S., Ruspic, C., Bhriain, N. N., Berkermann, F. & Schürmann, M. Benzyl complexes of lanthanide(II) and lanthanide(III) metals: trends and comparisons. Z. Naturforsch. B. 63, 267–274 (2008).

    Google Scholar 

  43. Goodwin, C. A. P., Reta, D., Ortu, F., Chilton, N. F. & Mills, D. P. Synthesis and electronic structures of heavy lanthanide metallocenium cations. J. Am. Chem. Soc. 139, 18714–18724 (2017).

    CAS  PubMed  Google Scholar 

  44. Parker, D., Suturina, E. A., Kuprov, I. & Chilton, N. F. How the ligand field in lanthanide coordination complexes determines magnetic susceptibility anisotropy, paramagnetic NMR shift, and relaxation behavior. Acc. Chem. Res. 53, 1520–1534 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Van Vleck, J. H. Paramagnetic relaxation times for titanium and chrome alum. Phys. Rev. 57, 426–447 (1940).

    Google Scholar 

  46. Ding, M. et al. Magnetization slow dynamics in ferrocenium complexes. Chem. Eur. J. 25, 10625–10632 (2019).

    CAS  PubMed  Google Scholar 

  47. Maniaki, D. et al. Asymmetric dinuclear lanthanide(III) complexes from the use of a ligand derived from 2-acetylpyridine and picolinoylhydrazide: synthetic, structural and magnetic studies. Molecules 25, 3153 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Amoza, M., Maxwell, L., Aliaga-Alcalde, N., Gómez-Coca, S. & Ruiz, E. Spin–phonon coupling and slow-magnetic relaxation in pristine ferrocenium. Chem. Eur. J. 27, 16440–16447 (2021).

    CAS  PubMed  Google Scholar 

  49. Pointillart, F., Gal, Y. L., Golhen, S., Cador, O. & Ouahab, L. Single-molecule magnet behaviour in a tetrathiafulvalene-based electroactive antiferromagnetically coupled dinuclear dysprosium(III) complex. Chem. Eur. J. 17, 10397–10404 (2011).

    CAS  PubMed  Google Scholar 

  50. Li, Q.-W. et al. ‘Half-sandwich’ YbIII single-ion magnets with metallacrowns. Chem. Commun. 51, 10291–10294 (2015).

    CAS  Google Scholar 

  51. Soussi, K. et al. Magnetic and photo-physical investigations into DyIII and YbIII complexes involving tetrathiafulvalene ligand. Inorg. Chem. Front. 2, 1105–1117 (2015).

    CAS  Google Scholar 

  52. Pedersen, K. S. et al. Design of single-molecule magnets: insufficiency of the anisotropy barrier as the sole criterion. Inorg. Chem. 54, 7600–7606 (2015).

    CAS  PubMed  Google Scholar 

  53. Long, J., Guari, Y., Ferreira, R. A. S., Carlos, L. D. & Larionova, J. Recent advances in luminescent lanthanide based single-molecule magnets. Coord. Chem. Rev. 363, 57–70 (2018).

    CAS  Google Scholar 

  54. Ziessel, R. F. et al. NIR lanthanide luminescence by energy transfer from appended terpyridine–boradiazaindacene dyes. Chem. Eur. J. 12, 5060–5067 (2006).

    CAS  PubMed  Google Scholar 

  55. Pointillart, F. et al. A redox-active luminescent ytterbium based single molecule magnet. Chem. Commun. 49, 615–617 (2012).

    Google Scholar 

  56. Gonçalves e Silva, F. R. et al. Visible and near-infrared luminescence of lanthanide-containing dimetallic triple-stranded helicates: energy transfer mechanisms in the SmIII and YbIII molecular edifices. J. Phys. Chem. A 106, 1670–1677 (2002).

    Google Scholar 

  57. Roos, B. O. in Advances in Chemical Physics: Ab Initio Methods in Quantum Chemistry II Vol. 69 (ed. Lawley, K. P.) 399–455 (Wiley, 1987).

  58. Roos, B. O., Lindh, R., Malmqvist, P. Å., Veryazov, V. & Widmark, P.-O. Multiconfigurational Quantum Chemistry (Wiley, 2016).

  59. Angeli, C., Cimiraglia, R., Evangelisti, S., Leininger, T. & Malrieu, J.-P. Introduction of n-electron valence states for multireference perturbation theory. J. Chem. Phys. 114, 10252 (2001).

    CAS  Google Scholar 

  60. Angeli, C., Cimiraglia, R. & Malrieu, J.-P. n-Electron valence state perturbation theory: a fast implementation of the strongly contracted variant. Chem. Phys. Lett. 350, 297–305 (2001).

    CAS  Google Scholar 

  61. Angeli, C., Cimiraglia, R. & Malrieu, J.-P. n-Electron valence state perturbation theory: a spinless formulation and an efficient implementation of the strongly contracted and of the partially contracted variants. J. Chem. Phys. 117, 9138–9153 (2002).

    CAS  Google Scholar 

  62. Lang, L., Sivalingam, K. & Neese, F. The combination of multipartitioning of the Hamiltonian with canonical Van Vleck perturbation theory leads to a Hermitian variant of quasidegenerate n-electron valence perturbation theory. J. Chem. Phys. 152, 014109 (2020).

    CAS  PubMed  Google Scholar 

  63. Angeli, C., Borini, S., Cestari, M. & Cimiraglia, R. A quasidegenerate formulation of the second order n-electron valence state perturbation theory approach. J. Chem. Phys. 121, 4043–4049 (2004).

    CAS  PubMed  Google Scholar 

  64. Nakano, H. Quasidegenerate perturbation theory with multiconfigurational self‐consistent‐field reference functions. J. Chem. Phys. 99, 7983–7992 (1993).

    CAS  Google Scholar 

  65. Neese, F. Software update: the ORCA program system, version 4.0. WIREs Comput. Mol. Sci. 8, e1327 (2018).

    Google Scholar 

  66. Neese, F., Wennmohs, F., Becker, U. & Riplinger, C. The ORCA quantum chemistry program package. J. Chem. Phys. 152, 224108 (2020).

    CAS  PubMed  Google Scholar 

  67. Liu, Y. et al. Magnetization dynamics on isotope-isomorphic holmium single-molecule magnets. Angew. Chem. Int. Ed. 60, 27282–27287 (2021).

    CAS  Google Scholar 

  68. Bader, R. F. W. A quantum theory of molecular structure and its applications. Chem. Rev. 91, 893–928 (1991).

    CAS  Google Scholar 

  69. Bader, R. F. W. Atoms in Molecules: A Quantum Theory (Oxford University Press, 1994).

  70. Reta, D. & Chilton, N. F. Uncertainty estimates for magnetic relaxation times and magnetic relaxation parameters. Phys. Chem. Chem. Phys. 21, 23567–23575 (2019).

    CAS  PubMed  Google Scholar 

  71. Krossing, I. The facile preparation of weakly coordinating anions: structure and characterisation of silverpolyfluoroalkoxyaluminates AgAl(ORF)4, calculation of the alkoxide ion affinity. Chem. Eur. J. 7, 490–502 (2001).

    CAS  PubMed  Google Scholar 

  72. Sheldrick, G. M. SHELXT—integrated space-group and crystal-structure determination. Acta Crystallogr. A 71, 3–8 (2015).

    Google Scholar 

  73. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. C 71, 3–8 (2015).

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the University of Ottawa, the Natural Sciences and Engineering Research Council of Canada and the Canadian Foundation for Innovation for funding and supporting this work. A.M. acknowledges funding provided by the Academy of Finland (grant number 332294) and the University of Oulu (Kvantum Institute). Computational resources were provided by CSC-IT Center for Science in Finland and the Finnish Grid and Cloud Infrastructure (persistent identifier urn:nbn:fi:research-infras-2016072533). The authors sincerely thank S. Hill and E. V. Salerno for their assistance with attempted EPR spectroscopy experiments. We also thank D. Chartrand and M. Thierry from the Université de Montréal for the single-crystal X-ray diffraction data collection of compound 2 performed at low temperature (90 K).

Author information

Authors and Affiliations

Authors

Contributions

D.E. and K.L.M.H. synthesized and characterized the compounds and collected and interpreted the magnetic data. D.E. and K.L.M.H. collected X-ray diffraction data on samples, and D.E. and A.A.K. performed structure determination and refinement. A.M. performed the ab initio calculations and analysis. D.A.G. collected and interpreted luminescence data. D.E. and K.L.M.H. wrote the manuscript with contributions from all authors. M.M. supervised all aspects of the project.

Corresponding author

Correspondence to Muralee Murugesu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Floriana Tuna and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

X-ray crystallography data, Supplementary Tables 1–14, Figs. 1–11 and computational details.

Supplementary Data 1

Crystallographic data for compound 1 at 200 K; CCDC 2222783.

Supplementary Data 2

Crystallographic data for compound 2 at 200 K; CCDC 2222786.

Supplementary Data 3

Crystallographic data for compound 2 at 90 K, CCDC 2222787.

Supplementary Data 4

Atomic coordinates used in the computational analysis. The molecules are named by their numerical identifier, with labels ‘a’ and ‘b’ referring to the two structures in the asymmetric unit. The optimized atomic coordinates where the phenyl rings have been replaced by methyl groups are indicated with a prime suffix (2′).

Supplementary Data 5

Source data for Supplementary Fig. 2 (Photoluminescence spectroscopy source data for 1); Supplementary Fig. 3 (Molar magnetic susceptibility-temperature product source data for 2); Supplementary Fig. 4 (Magnetization field dependence source data for 2); Supplementary Fig. 5 (Unprocessed in-phase molar magnetic susceptibility source data for 2 under variable field); Supplementary Fig. 7 (Unprocessed in-phase molar magnetic susceptibility source data for 2 under variable temperature); and Supplementary Fig. 10 (Calculated molar magnetic susceptibility-temperature product source data for 2).

Source data

Source Data Fig. 2

Unprocessed out-of-phase molar magnetic susceptibility source data for 2 under variable field and temperature.

Source Data Fig. 3

Photoluminescence spectroscopy source data for 2.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Errulat, D., Harriman, K.L.M., Gálico, D.A. et al. A trivalent 4f complex with two bis-silylamide ligands displaying slow magnetic relaxation. Nat. Chem. 15, 1100–1107 (2023). https://doi.org/10.1038/s41557-023-01208-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-023-01208-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing