Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chemoenzymatic synthesis of fluorinated polyketides

Abstract

Modification of polyketides with fluorine offers a promising approach to develop new pharmaceuticals. While synthetic chemical methods for site-selective incorporation of fluorine in complex molecules have improved in recent years, approaches for the biosynthetic incorporation of fluorine in natural compounds are still rare. Here, we report a strategy to introduce fluorine into complex polyketides during biosynthesis. We exchanged the native acyltransferase domain of a polyketide synthase, which acts as the gatekeeper for the selection of extender units, with an evolutionarily related but substrate tolerant domain from metazoan type I fatty acid synthase. The resulting polyketide-synthase/fatty-acid-synthase hybrid can utilize fluoromalonyl coenzyme A and fluoromethylmalonyl coenzyme A for polyketide chain extension, introducing fluorine or fluoro-methyl units in polyketide scaffolds. We demonstrate the feasibility of our approach in the chemoenzymatic synthesis of fluorinated 12- and 14-membered macrolactones and fluorinated derivatives of the macrolide antibiotics YC-17 and methymycin.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Modular PKSs and hybrid design.
Fig. 2: Function of the hybrid DEBS/FAS modules.
Fig. 3: Enzymatic synthesis of 10-deoxymethynolide derivatives.
Fig. 4: Synthesis of new fluorinated macrolide antibiotics and 14-membered macrolactones.

Similar content being viewed by others

Data availability

All data supporting the main findings of the article, including materials and methods, are described in the Article or Supplementary Information. Alternatively, the data are available from the corresponding author on request.

References

  1. de la Torre, B. G. & Albericio, F. The pharmaceutical industry in 2018. An analysis of FDA drug approvals from the perspective of molecules. Molecules 24, 809–820 (2019).

    Article  CAS  Google Scholar 

  2. Newman, D. J. & Cragg, G. M. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J. Nat. Prod. 75, 311–335 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. von Nussbaum, F., Brands, M., Hinzen, B., Weigand, S. & Häbich, D. Antibacterial natural products in medicinal chemistry—exodus or revival? Angew. Chem. Int. Ed. 45, 5072–5129 (2006).

    Article  CAS  Google Scholar 

  4. Hagmann, W. K. The many roles for fluorine in medicinal chemistry. J. Med. Chem. 51, 4359–4369 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Müller, K., Faeh, C. & Diederich, F. Fluorine in pharmaceuticals: looking beyond intuition. Science 317, 1881–1886 (2007).

    Article  PubMed  CAS  Google Scholar 

  6. Carvalho, M. F. & Oliveira, R. S. Natural production of fluorinated compounds and biotechnological prospects of the fluorinase enzyme. Crit. Rev. Biotechnol. 37, 880–897 (2017).

  7. Hertweck, C. The biosynthetic logic of polyketide diversity. Angew. Chem. Int. Ed. 48, 4688–4716 (2009).

    Article  CAS  Google Scholar 

  8. Staunton, J. & Weissman, K. J. Polyketide biosynthesis: a millennium review. Nat. Prod. Rep. 18, 380–416 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Klaus, M. & Grininger, M. Engineering strategies for rational polyketide synthase design. Nat. Prod. Rep. 35, 1070–1081 (2018).

    Article  CAS  PubMed  Google Scholar 

  10. Kalkreuter, E., CroweTipton, J. M., Lowell, A. N., Sherman, D. H. & Williams, G. J. Engineering the substrate specificity of a modular polyketide synthase for installation of consecutive non-natural extender units. J. Am. Chem. Soc. 141, 1961–1969 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Walker, M. C. et al. Expanding the fluorine chemistry of living systems using engineered polyketide synthase pathways. Science 341, 1089–1094 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Thuronyi, B. W., Privalsky, T. M. & Chang, M. C. Y. Engineered fluorine metabolism and fluoropolymer production in living cells. Angew. Chem. Int. Ed. 56, 13637–13640 (2017).

    Article  CAS  Google Scholar 

  13. Rittner, A., Paithankar, K. S., Huu, K. V. & Grininger, M. Characterization of the polyspecific transferase of murine type I fatty acid synthase (FAS) and implications for polyketide synthase (PKS) engineering. ACS Chem. Biol. 13, 723–732 (2018).

    Article  CAS  PubMed  Google Scholar 

  14. Stegemann, F. & Grininger, M. Transacylation kinetics in fatty acid and polyketide synthases and its sensitivity to point mutations. ChemCatChem 13, 2771–2782 (2021).

    Article  CAS  Google Scholar 

  15. Maier, T., Leibundgut, M. & Ban, N. The crystal structure of a mammalian fatty acid synthase. Science 321, 1315–1322 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Dutta, S. et al. Structure of a modular polyketide synthase. Nature 510, 512–517 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Weissman, K. J. The structural biology of biosynthetic megaenzymes. Nat. Chem. Biol. 11, 660–670 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. Wu, N., Kudo, F., Cane, D. E. & Khosla, C. Analysis of the molecular recognition features of individual modules derived from the erythromycin polyketide synthase. J. Am. Chem. Soc. 122, 4847–4852 (2000).

    Article  CAS  Google Scholar 

  19. Yoshikuni, Y., Ferrin, T. E. & Keasling, J. D. Designed divergent evolution of enzyme function. Nature 440, 1078–1082 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Saadi, J. & Wennemers, H. Enantioselective aldol reactions with masked fluoroacetates. Nat. Chem. 8, 276–280 (2016).

    Article  CAS  PubMed  Google Scholar 

  21. Yuzawa, S. et al. Comprehensive in vitro analysis of acyltransferase domain exchanges in modular polyketide synthases and its application for short-chain ketone production. ACS Synth. Biol. 6, 139–147 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. Klaus, M. et al. Solution structure and conformational flexibility of a polyketide synthase module. J. Am. Chem. Soc. Au 1, 2162–2171 (2021).

    CAS  Google Scholar 

  23. Shinde, P. B. et al. Combinatorial biosynthesis and antibacterial evaluation of glycosylated derivatives of 12-membered macrolide antibiotic YC-17. J. Biotechnol. 168, 142–148 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Auerbach, T. et al. Structural basis for the antibacterial activity of the 12-membered-ring mono-sugar macrolide methymycin. Biotechnologia 84, 24–35 (2009).

    Google Scholar 

  25. Almutairi, M. M. et al. Co-produced natural ketolides methymycin and pikromycin inhibit bacterial growth by preventing synthesis of a limited number of proteins. Nucleic Acids Res. 45, 9573–9582 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hansen, D. A. et al. Biocatalytic synthesis of pikromycin, methymycin, neomethymycin, novamethymycin, and ketomethymycin. J. Am. Chem. Soc. 135, 11232–11238 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hansen, D. A., Koch, A. A. & Sherman, D. H. Identification of a thioesterase bottleneck in the pikromycin pathway through full-module processing of unnatural pentaketides. J. Am. Chem. Soc. 139, 13450–13455 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hansen, D. A., Koch, A. A. & Sherman, D. H. Substrate controlled divergence in polyketide synthase catalysis. J. Am. Chem. Soc. 137, 3735–3738 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kalkreuter, E. et al. Computationally-guided exchange of substrate selectivity motifs in a modular polyketide synthase acyltransferase. Nat. Commun. 12, 2193 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fernandes, P., Martens, E., Bertrand, D. & Pereira, D. The solithromycin journey—it is all in the chemistry. Bioorganic & Medicinal Chemistry 24, 6420–6428 (2016).

    Article  CAS  Google Scholar 

  31. Donald, B. J., Surani, S., Deol, H. S., Mbadugha, U. J. & Udeani, G. Spotlight on solithromycin in the treatment of community-acquired bacterial pneumonia: design, development, and potential place in therapy. Drug Dev. Des. Ther. 11, 3559–3566 (2017).

    Article  CAS  Google Scholar 

  32. Zhanel, G. G. et al. Solithromycin: a novel fluoroketolide for the treatment of community-acquired bacterial pneumonia. Drugs 76, 1737–1757 (2016).

    Article  CAS  PubMed  Google Scholar 

  33. Poust, S. et al. Divergent mechanistic routes for the formation of gem-dimethyl groups in the biosynthesis of complex polyketides. Angew. Chem. Int. Ed. 54, 2370–2373 (2015).

    Article  CAS  Google Scholar 

  34. Koch, A. A. et al. Probing selectivity and creating structural diversity through hybrid polyketide synthases. Angew. Chem. Int. Ed. 59, 13575–13580 (2020).

    Article  CAS  Google Scholar 

  35. Jung, W. S. et al. Enhanced heterologous production of desosaminyl macrolides and their hydroxylated derivatives by overexpression of the pikD regulatory gene in Streptomyces venezuelae. Appl. Environ. Microbiol. 74, 1972–1979 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tang, Y., Kim, C. Y., Mathews, I. I., Cane, D. E. & Khosla, C. The 2.7-Å crystal structure of a 194-kDa homodimeric fragment of the 6-deoxyerythronolide B synthase. Proc. Natl Acad. Sci. USA 103, 11124–11129 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ploskoń, E. et al. A mammalian type I fatty acid synthase acyl carrier protein domain does not sequester acyl chains. J. Biol. Chem. 283, 518–528 (2008).

    Article  PubMed  CAS  Google Scholar 

  38. Sharma, K. K. & Boddy, C. N. The thioesterase domain from the pimaricin and erythromycin biosynthetic pathways can catalyze hydrolysis of simple thioester substrates. Bioorg. Med. Chem. Lett. 17, 3034–3037 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Peter, D. M. et al. Screening and engineering the synthetic potential of carboxylating reductases from central metabolism and polyketide biosynthesis. Angew. Chem. Int. Ed. 54, 13457–13461 (2015).

    Article  CAS  Google Scholar 

  40. Dunn, B. J., Watts, K. R., Robbins, T., Cane, D. E. & Khosla, C. Comparative analysis of the substrate specificity of trans- versus cis-acyltransferases of assembly line polyketide synthases. Biochemistry 53, 3796–3806 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. Lowell, A. N. et al. Chemoenzymatic total synthesis and structural diversification of tylactone-based macrolide antibiotics through late-stage polyketide assembly, tailoring, and C—H functionalization. J. Am. Chem. Soc. 139, 7913–7920 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. DeMars, M. D. et al. Biochemical and structural characterization of MycCI, a versatile P450 biocatalyst from the mycinamicin biosynthetic pathway. ACS Chem. Biol. 11, 2642–2654 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by a Lichtenberg grant of the Volkswagen Foundation to M.G. (grant number 85701). Further support was received from the LOEWE programme (Landes-Offensive zur Entwicklung wissenschaftlich-ökonomischer Exzellenz) of the state of Hesse conducted within the framework of the MegaSyn Research Cluster to M.G. We thank K. V. Huu and K. Karimi for MS analysis of acyl carrier proteins and K. S. Paithankar for proofreading the manuscript. Further, we are grateful to the Bode group for the extensive support in HPLC-MS and HPLC-HRMS analysis and J. Wirmer-Bartoschek and G. Sentis for support in NMR analysis. D.H.S. is grateful to National Institutes of Health grant R35 GM118101 and the Hans W. Vahlteich Professorship for support.

Author information

Authors and Affiliations

Authors

Contributions

A.R. conceived and supervised the project. M.G. and D.H.S. designed the research. A.R. and D.H. performed the expression, purification and mutagenesis of murine KS–MAT constructs. L.M.M. performed global kinetic experiments (with F-Mal-CoA and MM-CoA) and analysed corresponding data under the supervision of A.R.; S.R. performed global kinetic experiments (with F-MM-CoA) and analysed corresponding data under the supervision of M.J.; A.R. and M.J. designed DEBS/FAS hybrids. M.J. performed the expression, purification and analysis of DEBS M6 constructs with respective MS analysis. M.J. and E.H. performed substrate consumption assays by HPLC with ultraviolet spectroscopy. F-Mal-CoA and F-MM-CoA were synthesized by A.R., and the diketide SNAC was synthesized by M.J. Pentaketide and hexaketide substrates were synthesized by J.J.S.; A.R. and M.J. performed semi-synthesis and analysis of compounds 12, (14, 15), 16, 18, 22 and 23 and analysed all data. S.R. performed semi-synthesis of 18 with H1.1 under the supervision of M.J.; J.J.S. performed the biotransformation of compound 18 and analysed data. A.R., M.J., J.J.S., D.H.S. and M.G. wrote the manuscript.

Corresponding author

Correspondence to Martin Grininger.

Ethics declarations

Competing interests

A.R. declares a financial interest as a cofounder of kez.biosolutions GmbH (Potsdam, Germany). All other authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Constance Bailey, Binuraj Menon and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–24, Tables 1–6, Materials and Methods, notes, spectra and references.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rittner, A., Joppe, M., Schmidt, J.J. et al. Chemoenzymatic synthesis of fluorinated polyketides. Nat. Chem. 14, 1000–1006 (2022). https://doi.org/10.1038/s41557-022-00996-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-022-00996-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing