Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Aqueous interphase formed by CO2 brings electrolytes back to salt-in-water regime

Subjects

Abstract

Super-concentrated water-in-salt electrolytes make high-voltage aqueous batteries possible, but at the expense of high cost and several adverse effects, including high viscosity, low conductivity and slow kinetics. Here, we observe a concentration-dependent association between CO2 and TFSI anions in water that reaches maximum strength at 5 mol kg−1 LiTFSI. This TFSI–CO2 complex and its reduction chemistry allow us to decouple the interphasial responsibility of an aqueous electrolyte from its bulk properties, hence making high-voltage aqueous Li-ion batteries practical in dilute salt-in-water electrolytes. The CO2/salt-in-water electrolyte not only inherits the wide electrochemical stability window and non-flammability from water-in-salt electrolytes but also successfully circumvents the numerous disadvantages induced by excessive salt. This work represents a deviation from the water-in-salt pathway that not only benefits the development of practical aqueous batteries, but also highlights how the complex interactions between electrolyte components can be used to manipulate interphasial chemistry.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Quantitative analysis of the contribution to the initial discharge capacity in various WIS electrolytes.
Fig. 2: The evaluation of the SEI on the Mo6S8 electrode in WIS electrolyte (21 m LiTFSI) saturated with various gases in the three-electrode device.
Fig. 3: The physicochemical properties of 5 m LiTFSI solution.
Fig. 4: The interaction between CO2 and the TFSI anion before and after treatment with CO2.
Fig. 5: The electrochemical performance of an aqueous full-cell (LiMn2O4/CO2–SIW/Mo6S8).
Fig. 6: The kinetics-determining electrochemical performances of the LiMn2O4/Mo6S8 aqueous full-cell in CO2–SIW and WIS electrolytes.

Similar content being viewed by others

Data availability

All the data generated or analysed during this study are included in this article and its Supplementary Information. The details of the molecular dynamics simulation are available in Supplementary Data 1. Source data are provided with this paper.

References

  1. Li, W., Dahn, J. R. & Wainwright, D. S. Rechargeable lithium batteries with aqueous electrolytes. Science 264, 1115–1118 (1994).

    Article  CAS  PubMed  Google Scholar 

  2. Suo, L. et al. “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 350, 938–943 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Luo, J.-Y., Cui, W.-J., He, P. & Xia, Y.-Y. Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte. Nat. Chem. 2, 760–765 (2010).

    Article  PubMed  CAS  Google Scholar 

  4. Yamada, Y. et al. Hydrate-melt electrolytes for high-energy-density aqueous batteries. Nat. Energy 1, 16129 (2016).

    Article  CAS  Google Scholar 

  5. Yang, C. et al. Aqueous Li-ion battery enabled by halogen conversion–intercalation chemistry in graphite. Nature 569, 245–250 (2019).

    Article  CAS  PubMed  Google Scholar 

  6. Sun, W. et al. A rechargeable zinc-air battery based on zinc peroxide chemistry. Science 371, 46–51 (2021).

    Article  CAS  PubMed  Google Scholar 

  7. Wu, X. et al. Reverse dual-ion battery via a ZnCl2 water-in-salt electrolyte. J. Am. Chem. Soc. 141, 6338–6344 (2019).

    Article  CAS  PubMed  Google Scholar 

  8. Abbas, Q. et al. Strategies to improve the performance of carbon/carbon capacitors in salt aqueous electrolytes. J. Electrochem. Soc. 162, A5148–A5157 (2015).

    Article  CAS  Google Scholar 

  9. Liu, Q. et al. 2.2V high performance symmetrical fiber-shaped aqueous supercapacitors enabled by “water-in-salt” gel electrolyte and N-doped graphene fiber. Energy Storage Mater. 24, 495–503 (2020).

    Article  Google Scholar 

  10. Yoshio, H., Katsuhei, K., Akira, M. & Shin, S. Production of methane and ethylene in electrochemical reduction of carbon dioxide at copper electrode in aqueous hydrogencarbonate solution. Chem. Lett. 15, 897–898 (1986).

    Article  Google Scholar 

  11. Tomita, Y., Teruya, S., Koga, O. & Hori, Y. Electrochemical reduction of carbon dioxide at a platinum electrode in acetonitrile-water mixtures. J. Electrochem. Soc. 147, 4164–4167 (2000).

    Article  CAS  Google Scholar 

  12. Chen, Y.-T., Chen, H.-Y., Chien, Y.-S., Chuang, M.-C. & Chen, P.-Y. An excellent anode renders protic ionic liquids sustainable in metal electrodeposition. Green Chem. https://doi.org/10.1039/C9GC04169A 2020.

  13. Huang, Q. & Lyons, T. W. Electrodeposition of rhenium with suppressed hydrogen evolution from water-in-salt electrolyte. Electrochem. Commun. 93, 53–56 (2018).

    Article  CAS  Google Scholar 

  14. Pasta, M., Wessells, C. D., Huggins, R. A. & Cui, Y. A high-rate and long cycle life aqueous electrolyte battery for grid-scale energy storage. Nat. Commun. 3, 1149 (2012).

    Article  PubMed  CAS  Google Scholar 

  15. Wu, X. et al. Diffusion-free Grotthuss topochemistry for high-rate and long-life proton batteries. Nat. Energy 4, 123–130 (2019).

    Article  CAS  Google Scholar 

  16. Wessells, C., Ruffο, R., Huggins, R. A. & Cui, Y. Investigations of the electrochemical stability of aqueous electrolytes for lithium battery applications. Electrochem. Solid State Lett. 13, A59–A61 (2010).

    Article  CAS  Google Scholar 

  17. Winter, M. The solid electrolyte interphase – the most important and the least understood solid electrolyte in rechargeable Li batteries. Z. Phys. Chem. 223, 1395–1406 (2009).

    Article  CAS  Google Scholar 

  18. Wood, S. M. et al. Predicting calendar aging in lithium metal secondary batteries: the impacts of solid electrolyte interphase composition and stability. Adv. Energy Mater. 8, 1801427 (2018).

    Article  CAS  Google Scholar 

  19. Cheng, D. et al. Unveiling the stable nature of the solid electrolyte interphase between lithium metal and LiPON via cryogenic electron microscopy. Joule 4, 2484–2500 (2020).

    Article  CAS  Google Scholar 

  20. Li, W. & Dahn, J. R. Lithium-ion cells with aqueous electrolytes. J. Electrochem. Soc. 142, 1742–1746 (1995).

    Article  CAS  Google Scholar 

  21. Suo, L. et al. How solid-electrolyte interphase forms in aqueous electrolytes. J. Am. Chem. Soc. 139, 18670–18680 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. Zhao, M., Song, X., Wang, F., Dai, W. & Lu, X. Electrochemical performance of single crystalline spinel LiMn2O4 nanowires in an aqueous LiNO3 solution. Electrochim. Acta 56, 5673–5678 (2011).

    Article  CAS  Google Scholar 

  23. Wang, G. J. et al. Electrochemical behavior of LiCoO2 in a saturated aqueous Li2SO4 solution. Electrochim. Acta 54, 1199–1203 (2009).

    Article  CAS  Google Scholar 

  24. Liu, X.-H., Saito, T., Doi, T., Okada, S. & Yamaki, J.-I. Electrochemical properties of rechargeable aqueous lithium ion batteries with an olivine-type cathode and a NASICON-type anode. J. Power Sources 189, 706–710 (2009).

    Article  CAS  Google Scholar 

  25. Chen, Y., Freunberger, S. A., Peng, Z., Bardé, F. & Bruce, P. G. Li–O2 battery with a dimethylformamide electrolyte. J. Am. Chem. Soc. 134, 7952–7957 (2012).

    Article  CAS  PubMed  Google Scholar 

  26. Khurram, A., He, M. & Gallant, B. M. Tailoring the discharge reaction in Li-CO2 batteries through incorporation of CO2 capture chemistry. Joule 2, 2649–2666 (2018).

    Article  CAS  Google Scholar 

  27. Yao, K. P. C. et al. Thermal stability of Li2O2 and Li2O for Li-air batteries: in situ XRD and XPS studies. J. Electrochem. Soc. 160, A824–A831 (2013).

    Article  CAS  Google Scholar 

  28. Dong, Q. et al. Cathodically stable Li-O2 battery operations using water-in-salt electrolyte. Chem 4, 1345–1358 (2018).

    Article  CAS  Google Scholar 

  29. Ding, M. S. & Xu, K. Phase diagram, conductivity, and glass transition of LiTFSI–H2O binary electrolytes. J. Phys. Chem. C 122, 16624–16629 (2018).

    Article  CAS  Google Scholar 

  30. Frost, R. L. & Palmer, S. J. Infrared and infrared emission spectroscopy of nesquehonite Mg(OH)(HCO3)·2H2O–implications for the formula of nesquehonite. Spectrochim. Acta A 78, 1255–1260 (2011).

    Article  CAS  Google Scholar 

  31. Nunn, P. B. & O’Brien, P. The interaction of β-N-methylamino-L-alanine with bicarbonate: an 1H-NMR study. FEBS Lett. 251, 31–35 (1989).

    Article  CAS  PubMed  Google Scholar 

  32. Abbott, T. M., Buchanan, G. W., Kruus, P. & Lee, K. C. 13C nuclear magnetic resonance and Raman investigations of aqueous carbon dioxide systems. Can. J. Chem. 60, 1000–1006 (1982).

    Article  CAS  Google Scholar 

  33. Jakobsen, J. P., Krane, J. & Svendsen, H. F. Liquid-phase composition determination in CO2−H2O−alkanolamine systems: an NMR study. Ind. Eng. Chem. Res. 44, 9894–9903 (2005).

    Article  CAS  Google Scholar 

  34. Fears, T. M. et al. Evaluating the solid electrolyte interphase formed on silicon electrodes: a comparison of ex situ X-ray photoelectron spectroscopy and in situ neutron reflectometry. Phys. Chem. Chem. Phys. 18, 13927–13940 (2016).

    Article  CAS  PubMed  Google Scholar 

  35. Dubouis, N. et al. The role of the hydrogen evolution reaction in the solid–electrolyte interphase formation mechanism for “Water-in-Salt” electrolytes. Energy Environ. Sci. 11, 3491–3499 (2018).

    Article  CAS  Google Scholar 

  36. Jiang, L. et al. High-voltage aqueous Na-ion battery enabled by inert-cation-assisted water-in-salt electrolyte. Adv. Mater. 32, 1904427 (2020).

    Article  CAS  Google Scholar 

  37. Huang, J. & Rüther, T. Why are ionic liquids attractive for CO2 absorption? An overview. Aust. J. Chem. 62, 298–308 (2009).

    Article  CAS  Google Scholar 

  38. Cadena, C. et al. Why is CO2 so soluble in imidazolium-based ionic liquids? J. Am. Chem. Soc. 126, 5300–5308 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Tan, P. et al. Solid-like nano-anion cluster constructs a free lithium-ion-conducting superfluid framework in a water-in-salt electrolyte. J. Phys. Chem. C 125, 11838–11847 (2021).

    Article  CAS  Google Scholar 

  40. Jorgensen, W. L., Maxwell, D. S. & Tirado-Rives, J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118, 11225–11236 (1996).

    Article  CAS  Google Scholar 

  41. Canongia Lopes, J. N. & Pádua, A. A. H. Molecular force field for ionic liquids composed of triflate or bistriflylimide anions. J. Phys. Chem. B 108, 16893–16898 (2004).

    Article  CAS  Google Scholar 

  42. McEldrew, M., Goodwin, Z. A. H., Kornyshev, A. A. & Bazant, M. Z. Theory of the double layer in water-in-salt electrolytes. J. Phys. Chem. Lett. 9, 5840–5846 (2018).

    Article  CAS  PubMed  Google Scholar 

  43. Berendsen, H. J. C., Grigera, J. R. & Straatsma, T. P. The missing term in effective pair potentials. J. Phys. Chem. 91, 6269–6271 (1987).

    Article  CAS  Google Scholar 

  44. Zhu, A., Zhang, X., Liu, Q. & Zhang, Q. A fully flexible potential model for carbon dioxide. Chin. J. Chem. Eng. 17, 268–272 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

All authors except K.X. acknowledge the support of the National Natural Science Foundation of China (51872322) and the Center for Clean Energy. J.Z., M.C. and G.F. thank the Hubei Provincial Natural Science Foundation of China (2020CFA093) and the Program for Huazhong University of Science and Technology, Academic Frontier Youth Team. K.X. thanks the Joint Center of Energy Storage Research, an energy hub funded by the US Department of Energy, Basic Energy Sciences, for support.

Author information

Authors and Affiliations

Authors

Contributions

L.S. and K.X. conceived the idea. J.Y. and L.S. designed the experiments. J.Y. performed the material preparation, electrochemical measurements and data analysis. L.J. performed the NMR measurements. Y.T. collected the TEM images, and L.L. measured the XPS spectra. T.L. performed the cost analysis of the electrolyte. J.Z., M.C. and G.F. performed the molecular dynamics simulations and analysed the data. J.Y., G.F., K.X. and L.S. wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Kang Xu or Liumin Suo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Chemistry thanks Jin Han and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–39, Tables 1–3 and experimental details.

Supplementary Data 1

Bulk files for molecular dynamics simulation.

Source data

Source Data Fig. 1

Source data for the graph in Fig. 1.

Source Data Fig. 2

Source data for the graph in Fig. 2.

Source Data Fig. 3

Source data for the graph in Fig. 3.

Source Data Fig. 4

Source data for the graph in Fig. 4.

Source Data Fig. 5

Source data for the graph in Fig. 5.

Source Data Fig. 6

Source data for the graph in Fig. 6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yue, J., Zhang, J., Tong, Y. et al. Aqueous interphase formed by CO2 brings electrolytes back to salt-in-water regime. Nat. Chem. 13, 1061–1069 (2021). https://doi.org/10.1038/s41557-021-00787-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-021-00787-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing