Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Unusual Ti minerals on the Moon produced by space weathering

Abstract

Micrometeorite impacts are one of the main drivers of lunar space weathering and can alter the properties of lunar regolith. However, the details of such processes are not well understood yet. We used transmission electron microscopy to study a micrometeorite impact crater on a glass bead returned by Chang’e-5. We detected Ti-oxide deposits on the crater rim and identified their detailed structure as rutile (TiO2), trigonal Ti2O and triclinic Ti2O. The trigonal Ti2O and triclinic Ti2O are newly discovered mineral phases in lunar samples. We show that these Ti-oxide deposits could have formed by vaporization or deposition processes following a high-velocity microimpact on the lunar regolith. We suggest that such Ti minerals are previously overlooked space-weathering products on the Moon. Similar alterations to photocatalytic properties and reflectance spectra of regolith may also happen on other airless planetary bodies in the Solar System.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Micrometeorite impact crater on the Chang’e-5 glass bead.
Fig. 2: Ti-oxide deposits on the rim of the micrometeorite impact crater.
Fig. 3: TEM results identifying the Ti-oxide deposits.
Fig. 4: Graphical depiction of the formation scenario of Ti-oxide deposits by micrometeorite impact vaporization-deposition on the Moon.

Similar content being viewed by others

Data availability

All data in the paper are presented in the paper or the Supplementary Information. The unprocessed SEM and TEM data for Figs. 13 are available to download from figshare at https://doi.org/10.6084/m9.figshare.25244650.

Code availability

No code is used in this study.

References

  1. Noguchi, T. et al. Incipient space weathering observed on the surface of Itokawa dust particles. Science 333, 1121–1125 (2011).

    Article  CAS  PubMed  ADS  Google Scholar 

  2. Pieters, C. M. et al. Distinctive space weathering on Vesta from regolith mixing processes. Nature 491, 79–82 (2012).

    Article  CAS  PubMed  ADS  Google Scholar 

  3. Pieters, C. M. & Noble, S. K. Space weathering on airless bodies. J. Geophys. Res. Planets 121, 1865–1884 (2016).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  4. Matsumoto, T., Harries, D., Langenhorst, F., Miyake, A. & Noguchi, T. Iron whiskers on asteroid Itokawa indicate sulfide destruction by space weathering. Nat. Commun. 11, 1–8 (2020).

    Article  Google Scholar 

  5. Hapke, B. Space weathering from Mercury to the asteroid belt. J. Geophys. Res. Planets 106, 10039–10073 (2001).

    Article  CAS  ADS  Google Scholar 

  6. Bennett, C. J., Pirim, C. & Orlando, T. M. Space-weathering of Solar System bodies: a laboratory perspective. Chem. Rev. 113, 9086–9150 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Keller, L. P. & McKay, D. S. Discovery of vapor deposits in the lunar regolith. Science 261, 1305–1307 (1993).

    Article  CAS  PubMed  ADS  Google Scholar 

  8. Cintala, M. J. Impact‐induced thermal effects in the lunar and Mercurian regoliths. J. Geophys. Res. Planets 97, 947–973 (1992).

    Article  ADS  Google Scholar 

  9. Cremonese, G., Borin, P., Lucchetti, A., Marzari, F. & Bruno, M. Micrometeoroids flux on the Moon. Astron. Astrophys. 551, A27 (2013).

    Article  ADS  Google Scholar 

  10. Burgess, K. D. & Stroud, R. M. Phase-dependent space weathering effects and spectroscopic identification of retained helium in a lunar soil grain. Geochim. Cosmochim. Acta 224, 64–79 (2018).

    Article  CAS  ADS  Google Scholar 

  11. Gu, L. et al. Space weathering of the Chang’e‐5 lunar sample from a mid‐high latitude region on the Moon. Geophys. Res. Lett. 49, e2022GL097875 (2022).

    Article  ADS  Google Scholar 

  12. Li, Y. et al. Crystal orientation results in different amorphization of olivine during solar wind implantation. J. Geophys. Res. Planets 118, 1974–1982 (2013).

    Article  CAS  ADS  Google Scholar 

  13. Zeng, X. et al. Experimental investigation of OH/H2O in H+-irradiated plagioclase: implications for the thermal stability of water on the lunar surface. Earth Planet. Sci. Lett. 560, 116806 (2021).

    Article  CAS  Google Scholar 

  14. Sasaki, S., Nakamura, K., Hamabe, Y., Kurahashi, E. & Hiroi, T. Production of iron nanoparticles by laser irradiation in a simulation of lunar-like space weathering. Nature 410, 555–557 (2001).

    Article  CAS  PubMed  ADS  Google Scholar 

  15. Wu, Y., Li, X., Yao, W. & Wang, S. Impact characteristics of different rocks in a pulsed laser irradiation experiment: simulation of micrometeorite bombardment on the Moon. J. Geophys. Res. Planets 122, 1956–1967 (2017).

    Article  CAS  ADS  Google Scholar 

  16. Keller, L. P. & McKay, D. S. The nature and origin of rims on lunar soil grains. Geochim. Cosmochim. Acta 61, 2331–2341 (1997).

    Article  CAS  ADS  Google Scholar 

  17. Noble, S. K., Pieters, C. M. & Keller, L. P. An experimental approach to understanding the optical effects of space weathering. Icarus 192, 629–642 (2007).

    Article  CAS  ADS  Google Scholar 

  18. Anand, M. et al. Space weathering on airless planetary bodies: clues from the lunar mineral hapkeite. Proc. Natl Acad. Sci. USA 101, 6847–6851 (2004).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  19. Gu, L. et al. The discovery of silicon oxide nanoparticles in space-weathered of Apollo 15 lunar soil grains. Icarus 303, 47–52 (2018).

    Article  CAS  ADS  Google Scholar 

  20. Christoffersen, R., McKay, D. S. & Keller, P. Microstructure, chemistry, and origin of grain rims on ilmenite from the lunar soil finest fraction. Meteorit. Planet. Sci. 31, 835–848 (1996).

    Article  CAS  ADS  Google Scholar 

  21. Zhang, S. & Keller, L. P. A STEM-EELS study of the effect of solar-wind irradiation on the ilmenite from lunar soil. Microsc. Microanal. 16, 1216–1217 (2010).

    Article  CAS  ADS  Google Scholar 

  22. Papike, J. J., Ryder, G. & Shearer, C. K. in Planetary Materials (ed. Papike, J. J.) Ch. 5 (Mineralogical Society of America, 1998).

  23. Li, C. et al. Characteristics of the lunar samples returned by the Chang’e-5 mission. Natl Sci. Rev. 9, nwab188 (2022).

    Article  CAS  PubMed  Google Scholar 

  24. Che, X. et al. Age and composition of young basalts on the Moon, measured from samples returned by Chang’e-5. Science 374, 887–890 (2021).

    Article  CAS  PubMed  ADS  Google Scholar 

  25. Li, Q. L. et al. Two-billion-year-old volcanism on the Moon from Chang’e-5 basalts. Nature 600, 54–58 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  26. Delano, J. W. Pristine lunar glasses: criteria, data, and implications. J. Geophys. Res. 91, 201–213 (1986).

    Article  Google Scholar 

  27. Naney, M. T., Crowl, D. M. & Papike, J. J. The Apollo 16 drill core: statistical analysis of glass chemistry and the characterization of a high alumina-silica poor (HASP) glass. In Lunar and Planetary Science Conference Proc. 155–184 (Pergamon, 1976).

  28. Lucey, P. et al. Understanding the lunar surface and space–Moon interactions. Rev. Mineral. Geochem. 60, 83–219 (2006).

    Article  CAS  Google Scholar 

  29. Rubin, A. E. & Ma, C. Meteoritic minerals and their origins. Geochemistry 77, 325–385 (2017).

    Article  CAS  Google Scholar 

  30. Fan, Y. et al. Structure and transport properties of titanium oxide (Ti2O, TiO1 + δ, and Ti3O5) thin films. J. Alloys Compd. 786, 607–613 (2019).

    Article  CAS  Google Scholar 

  31. Miyahara, M. et al. Discovery of seifertite in a shocked lunar meteorite. Nat. Commun. 4, 1737 (2013).

    Article  PubMed  ADS  Google Scholar 

  32. Kayama, M. et al. Discovery of moganite in a lunar meteorite as a trace of H2O ice in the Moon’s regolith. Sci. Adv. 4, eaar4378 (2018).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  33. Zhang, A. C., Pang, R. L., Sakamoto, N. & Yurimoto, H. The Cr-Zr-Ca armalcolite in lunar rocks is loveringite: constraints from electron backscatter diffraction measurements. Am. Mineral. 105, 1021–1029 (2020).

    Article  ADS  Google Scholar 

  34. Christoffersen, R., Keller, L. P., Dukes, C., Rahman, Z. & Baragiola, R. Experimental investigation of space radiation processing in lunar soil ilmenite: combining perspectives from surface science and transmission electron microscopy. In Lunar and Planetary Science Conference 1532 (NASA, 2010).

  35. Greer, J. et al. Atom probe tomography of space‐weathered lunar ilmenite grain surfaces. Meteorit. Planet. Sci. 55, 426–440 (2020).

    Article  CAS  ADS  Google Scholar 

  36. Gordienko, A. & Kaye, A. B. Unique pulsed-laser deposition production of anatase and rutile TiO2 on Al2O3. Cryst. Struct. Theory Appl. 7, 19–31 (2018).

    CAS  Google Scholar 

  37. Fathi-Hafshejani, P. et al. Laser-assisted selective and localized surface transformation of titanium to anatase, rutile, and mixed phase nanostructures. J. Laser Appl. 33, 012014 (2021).

    Article  CAS  ADS  Google Scholar 

  38. Bilson, E., Gold, T. & Gull, G. The simulation of lunar micrometeorite impacts by laser pulses. Moon 6, 405–413 (1973).

    Article  ADS  Google Scholar 

  39. Hapke, B. Darkening of silicate rock powders by solar wind sputtering. Earth Moon Planets 7, 342–355 (1973).

    Google Scholar 

  40. Lucey, G., Blewett, D. T. & Hawke, B. R. Mapping the FeO and TiO2 content of the lunar surface with multispectral imagery. J. Geophys. Res. Planets 103, 3679–3699 (1998).

    Article  CAS  ADS  Google Scholar 

  41. Robertson, R. et al. Textural and compositional effects of ilmenite on the spectra of high-titanium lunar basalts. Icarus 375, 114836 (2022).

    Article  CAS  Google Scholar 

  42. Li, X., Wu, J., Wen, M., Tang, X. & Liu, Y. Particular properties of Ti2O and TiNx nanoparticles prepared by thermal decomposition. Rare Met. 27, 598–602 (2008).

    Google Scholar 

  43. Nakata, K. & Fujishima, A. TiO2 photocatalysis: design and applications. J. Photochem. Photobiol. C, Photochem. Rev. 13, 169–189 (2012).

    Article  CAS  Google Scholar 

  44. Fujishima, A., Zhang, X. & Tryk, D. A. TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 63, 515–582 (2008).

    Article  CAS  ADS  Google Scholar 

  45. Tang, X. et al. Application of natural minerals in photocatalytic degradation of organic pollutants: a review. Sci. Total Environ. 812, 152434 (2022).

    Article  CAS  PubMed  ADS  Google Scholar 

  46. Yao, Y. et al. Extraterrestrial photosynthesis by Chang’e-5 lunar soil. Joule 6, 1008–1014 (2022).

    Article  CAS  Google Scholar 

  47. Aponte, J. C. et al. Extraterrestrial organic compounds and cyanide in the CM2 carbonaceous chondrites Aguas Zarcas and Murchison. Meteorit. Planet. Sci. 55, 1509–1524 (2020).

    Article  MathSciNet  CAS  ADS  Google Scholar 

  48. Parker, E. et al. Amino acid analyses of a sample of Ryugu by a combination of liquid chromatography and high-resolution mass spectrometry techniques. LPI Contrib. 2678, 2651 (2022).

    ADS  Google Scholar 

Download references

Acknowledgements

We were allocated the Chang’e-5 sample by the China National Space Administration. We thank A. Zhang and T. Long for their suggestions about this work. We are grateful to L. Maltagliati for the editorial handling of the manuscript. X. Zeng is supported by the National Key Research and Development Programme of China (Grant No. 2022YFF0503100), the B-type Strategic Priority Programme of the Chinese Academy of Sciences (Grant No. XDB41000000) and the National Natural Science Foundation of China (Grant No. 42103036). X.L. is supported by the National Natural Science Foundation of China (Grant No. 41931077), the Strategic Priority Programme of the Chinese Academy of Sciences (Grant No. XDB41020300) and Guizhou Provincial Science and Technology Projects (Grant No. GZ2019SIG). X. Zhang is supported by the Science and Technology Development Fund of Macau (Grant No. 0014/2022/A1). J.L. acknowledges support from the National Key Research and Development Programme of China (Grant No. 2022YFF0503100) and the B-type Strategic Priority Programme of the Chinese Academy of Sciences (Grant No. XDB41000000). W.Y. is supported by the National Natural Science Foundation of China (Grant No. 42241104). Y. Wu acknowledges support from the National Natural Science Foundation of China (Nos. 42203047 and 42241108), Science and Technology Planning Project of Guangzhou (Grant Nos. 2024A04J9999 and 202102021184) and the Innovation Training Programme for College Students of Guangdong Province (Grant No. S202111845208).

Author information

Authors and Affiliations

Authors

Contributions

X. Zeng prepared the Chang’e-5 sample, recognized the Ti-oxide deposits on the rim of micrometeorite impact crater, performed the research and prepared the initial paper. X. Zhang contributed to the discussion of new Ti minerals on the Moon. X. Zhang, X.L. and J.L. designed the research. W.Y., B.M. and Y. Wen provided technical support. Y. Wu and X. Zhao performed the TEM analysis. All authors participated in the discussion of the results, data interpretation and paper editing.

Corresponding authors

Correspondence to Xiongyao Li, Xiaoping Zhang or Jianzhong Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Katherine Burgess, Lingzhi Sun and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–14 and Table 1.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, X., Wu, Y., Yu, W. et al. Unusual Ti minerals on the Moon produced by space weathering. Nat Astron (2024). https://doi.org/10.1038/s41550-024-02229-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41550-024-02229-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing