Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A dynamically discovered and characterized non-accreting neutron star–M dwarf binary candidate

Abstract

Typically, neutron stars are discovered by observations at radio, X-ray or gamma-ray wavelengths. Unlike radio pulsar surveys and X-ray observations, optical time-domain surveys can unveil and characterize exciting but less explored non-accreting and/or non-beaming neutron stars in binaries. Here we report the discovery of such a neutron star candidate using the LAMOST spectroscopic survey. The candidate, designated LAMOST J112306.9 + 400736, is in a single-lined spectroscopic binary containing an optically visible M star. The star’s large radial velocity variation and ellipsoidal variations indicate a relatively massive unseen companion. Utilizing follow-up spectroscopy from the Palomar 200 in. telescope and high-precision photometry from the Transiting Exoplanet Survey Satellite, we measure a companion mass of \(1.2{4}_{-0.03}^{+0.03}\,{M}_{\odot }\). Main-sequence stars with this mass are ruled out, leaving a neutron star or a massive white dwarf. Although a massive white dwarf cannot be excluded, the lack of UV excess radiation from the companion supports the neutron star hypothesis. Deep radio observations with the Five-hundred-meter Aperture Spherical radio Telescope (FAST) yielded no detections of either pulsed or persistent emission. J112306.9 + 400736 is not detected in numerous X-ray and gamma-ray surveys, suggesting that the neutron star candidate is not currently accreting and pulsing. Our work exemplifies the capability of discovering compact objects in non-accreting close binaries by synergizing optical time-domain spectroscopy and high-cadence photometry.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The phase-folded RV curve and the multiband light curves for J1123.
Fig. 2: The broadband SED of J1123.
Fig. 3: The mass of the visible star (M1) versus that of the hidden compact object (M2).
Fig. 4: Phase-stacked Balmer (Hα–Hγ) emission lines, and Ca ii H&K emission lines.
Fig. 5: The viewing wheel of J1123 that summarizes our best understanding of the system.

Similar content being viewed by others

Data availability

The LAMOST low-resolution spectra can be queried at https://nadc.china-vo.org/data/data/sedr5/f?&locale=en. Raw TESS data are available from the Mikulski Archive for Space Telescopes portal: https://archive.stsci.edu/missions-and-data/tess. The data can also be obtained from the corresponding author upon reasonable request.

Code availability

The Lomb–Scargle module is publicly available on https://github.com/TuanYi/LombScargle. Reasonable requests for other materials and codes should be addressed to W.-M.G. (guwm@xmu.edu.cn).

References

  1. Özel, F., Psaltis, D., Narayan, R. & Santos Villarreal, A. On the mass distribution and birth masses of neutron stars. Astrophys. J. 757, 55 (2012).

    Article  ADS  Google Scholar 

  2. Keane, E. F. & Kramer, M. On the birthrates of Galactic neutron stars. Mon. Not. R. Astron. Soc. 391, 2009–2016 (2008).

    Article  ADS  Google Scholar 

  3. Lorimer, D. R. Binary and millisecond pulsars. Living Rev. Relativ. 11, 8 (2008).

    Article  ADS  MATH  Google Scholar 

  4. Abdo, A. A. et al. The first Fermi Large Area Telescope catalog of gamma-ray pulsars. Astrophys. J. Suppl. Ser. 187, 460–494 (2010).

    Article  ADS  Google Scholar 

  5. Haberl, F. The magnificent seven: magnetic fields and surface temperature distributions. Astrophys. Space Sci. 308, 181–190 (2007).

    Article  ADS  Google Scholar 

  6. Abbott, B. P. et al. GW170817: observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett. 119, 161101 (2017).

    Article  ADS  Google Scholar 

  7. Caraveo, P. A., Bignami, G. F. & Trümper, J. E. Radio-silent isolated neutron stars as a new astronomical reality. Astron. Astrophys. Rev. 7, 209–216 (1996).

    Article  ADS  Google Scholar 

  8. Cui, X.-Q. et al. The Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST). Res. Astron. Astrophys. 12, 1197–1242 (2012).

    Article  ADS  Google Scholar 

  9. Zhao, G., Zhao, Y.-H., Chu, Y.-Q., Jing, Y.-P. & Deng, L.-C. LAMOST spectral survey—an overview. Res. Astron. Astrophys. 12, 723–734 (2012).

    Article  ADS  Google Scholar 

  10. Trimble, V. L. & Thorne, K. S. Spectroscopic binaries and collapsed stars. Astrophys. J. 156, 1013 (1969).

    Article  ADS  Google Scholar 

  11. Casares, J. et al. A Be-type star with a black-hole companion. Nature 505, 378–381 (2014).

    Article  ADS  Google Scholar 

  12. Liu, J. et al. A wide star–black-hole binary system from radial-velocity measurements. Nature 575, 618–621 (2019).

    Article  ADS  Google Scholar 

  13. Thompson, T. A. et al. A noninteracting low-mass black hole–giant star binary system. Science 366, 637–640 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  14. Jayasinghe, T. et al. A unicorn in Monoceros: the 3 M dark companion to the bright, nearby red giant V723 Mon is a non-interacting, mass-gap black hole candidate. Mon. Not. R. Astron. Soc. 504, 2577–2602 (2021).

    Article  ADS  Google Scholar 

  15. Bailyn, C. D., Jain, R. K., Coppi, P. & Orosz, J. A. The mass distribution of stellar black holes. Astrophys. J. 499, 367–374 (1998).

    Article  ADS  Google Scholar 

  16. Morris, S. L. & Naftilan, S. A. The equations of ellipsoidal star variability applied to HR 8427. Astrophys. J. 419, 344–348 (1993).

    Article  ADS  Google Scholar 

  17. Kesseli, A. Y. et al. An empirical template library of stellar spectra for a wide range of spectral classes, luminosity classes, and metallicities using SDSS BOSS spectra. Astrophys. J. Suppl. Ser. 230, 16 (2017).

    Article  ADS  Google Scholar 

  18. Gaia Collaboration et al. Gaia Early Data Release 3. Summary of the contents and survey properties. Astron. Astrophys. 649, A1 (2021).

  19. Linsky, J. L. Stellar model chromospheres and spectroscopic diagnostics. Annu. Rev. Astron. Astrophys. 55, 159–211 (2017).

    Article  ADS  Google Scholar 

  20. Jones, D. O. & West, A. A. A catalog of GALEX ultraviolet emission from spectroscopically confirmed M dwarfs. Astrophys. J. 817, 1 (2016).

    Article  ADS  Google Scholar 

  21. Roberts, M. S. E. Surrounded by spiders! New black widows and redbacks in the Galactic field. Proc. Int. Astron. Union 8, 127–132 (2013).

  22. Burdge, K. B. et al. A 62-minute orbital period black widow binary in a wide hierarchical triple. Nature 605, 41–45 (2022).

    Article  ADS  Google Scholar 

  23. Polzin, E. J. et al. Study of spider pulsar binary eclipses and discovery of an eclipse mechanism transition. Mon. Not. R. Astron. Soc. 494, 2948–2968 (2020).

    Article  ADS  Google Scholar 

  24. Hessels, J. W. T. et al. A radio pulsar spinning at 716 Hz. Science 311, 1901–1904 (2006).

    Article  ADS  Google Scholar 

  25. Clark, C. J. et al. Einstein@Home discovery of the gamma-ray millisecond pulsar PSR J2039-5617 confirms its predicted redback nature. Mon. Not. R. Astron. Soc. 502, 915–934 (2021).

    Article  ADS  Google Scholar 

  26. The Fermi-LAT Collaboration et al. Fermi Large Area Telescope fourth source catalog. Astrophys. J. Suppl. Ser. 247, 33 (2020).

  27. Johnston, S. et al. Discovery of a very bright, nearby binary millisecond pulsar. Nature 361, 613–615 (1993).

    Article  ADS  Google Scholar 

  28. Verbunt, F. & Zwaan, C. Magnetic braking in low-mass X-ray binaries. Astron. Astrophys. 100, L7–L9 (1981).

    ADS  Google Scholar 

  29. Rappaport, S., Verbunt, F. & Joss, P. C. A new technique for calculations of binary stellar evolution application to magnetic braking. Astrophys. J. 275, 713–731 (1983).

    Article  ADS  Google Scholar 

  30. Shao, Y. & Li, X.-D. Formation and evolution of Galactic intermediate/low-mass X-ray binaries. Astrophys. J. 809, 99 (2015).

    Article  ADS  Google Scholar 

  31. Bai, Z.-R. et al. The first data release of LAMOST low-resolution single-epoch spectra. Res. Astron. Astrophys. 21, 249 (2021).

    Article  ADS  Google Scholar 

  32. Drake, A. J. et al. The Catalina Surveys periodic variable star catalog. Astrophys. J. Suppl. Ser. 213, 9 (2014).

    Article  ADS  Google Scholar 

  33. Mu, H.-J. et al. Compact object candidates with K/M-dwarf companions from LAMOST low-resolution survey. Sci. China Phys. Mech. Astron. 65, 229711 (2022).

    Article  ADS  Google Scholar 

  34. Bellm, E. C. et al. The Zwicky Transient Facility: system overview, performance, and first results. Publ. Astron. Soc. Pac. 131, 018002 (2019).

    Article  ADS  Google Scholar 

  35. Mainzer, A. et al. Preliminary results from NEOWISE: an enhancement to the Wide-field Infrared Survey Explorer for solar system science. Astrophys. J. 731, 53 (2011).

    Article  ADS  Google Scholar 

  36. Ricker, G. R. et al. Transiting Exoplanet Survey Satellite (TESS). J. Astron. Telesc. Instrum. Syst. 1, 014003 (2015).

    Article  ADS  Google Scholar 

  37. Lightkurve Collaboration et al. Lightkurve: Kepler and TESS time series analysis in Python. Astrophysics Source Code Library ascl:1812.013 (2018).

  38. Lomb, N. R. Least-squares frequency analysis of unequally spaced data. Astrophys. Space Sci. 39, 447–462 (1976).

    Article  ADS  Google Scholar 

  39. Scargle, J. D. Studies in astronomical time series analysis. II. Statistical aspects of spectral analysis of unevenly spaced data. Astrophys. J. 263, 835–853 (1982).

    Article  ADS  Google Scholar 

  40. Zechmeister, M. & Kürster, M. The generalised Lomb–Scargle periodogram. A new formalism for the floating-mean and Keplerian periodograms. Astron. Astrophys. 496, 577–584 (2009).

    Article  ADS  Google Scholar 

  41. Press, W. H. & Rybicki, G. B. Fast algorithm for spectral analysis of unevenly sampled data. Astrophys. J. 338, 277–280 (1989).

    Article  ADS  Google Scholar 

  42. VanderPlas, J. T. Understanding the Lomb–Scargle periodogram. Astrophys. J. Suppl. Ser. 236, 16 (2018).

    Article  ADS  Google Scholar 

  43. Martin, D. C. et al. The Galaxy Evolution Explorer: a space ultraviolet survey mission. Astrophys. J. Lett. 619, L1–L6 (2005).

    Article  ADS  Google Scholar 

  44. York, D. G. et al. The Sloan Digital Sky Survey: technical summary. Astron. J. 120, 1579–1587 (2000).

    Article  ADS  Google Scholar 

  45. Chambers, K. C. et al. The Pan-STARRS1 Surveys. Preprint at https://arxiv.org/abs/1612.05560 (2016).

  46. Cutri, R. M. et al. 2MASS All-Sky Catalog of Point Sources (Cutri+ 2003) no. II/246 (VizieR Online Data Catalog, 2003).

  47. Wright, E. L. et al. The Wide-field Infrared Survey Explorer (WISE): mission description and initial on-orbit performance. Astron. J. 140, 1868–1881 (2010).

    Article  ADS  Google Scholar 

  48. Cutri, R. M. et al. WISE All-Sky Data Release (Cutri+ 2012) no. II/311 (VizieR Online Data Catalog, 2012).

  49. Green, G. M. et al. Galactic reddening in 3D from stellar photometry—an improved map. Mon. Not. R. Astron. Soc. 478, 651–666 (2018).

    Article  ADS  Google Scholar 

  50. El-Badry, K. et al. LAMOST J0140355 + 392651: an evolved cataclysmic variable donor transitioning to become an extremely low-mass white dwarf. Mon. Not. R. Astron. Soc. 505, 2051–2073 (2021).

    Article  ADS  Google Scholar 

  51. Cardelli, J. A., Clayton, G. C. & Mathis, J. S. The relationship between infrared, optical, and ultraviolet extinction. Astrophys. J. 345, 245–256 (1989).

    Article  ADS  Google Scholar 

  52. Fitzpatrick, E. L. Correcting for the effects of interstellar extinction. Publ. Astron. Soc. Pac. 111, 63–75 (1999).

    Article  ADS  Google Scholar 

  53. Allard, F., Homeier, D. & Freytag, B. Models of very-low-mass stars, brown dwarfs and exoplanets. Philos. Trans. R. Soc. A 370, 2765–2777 (2012).

    Article  ADS  Google Scholar 

  54. Bayo, A. et al. VOSA: Virtual Observatory SED Analyzer. An application to the Collinder 69 open cluster. Astron. Astrophys. 492, 277–287 (2008).

    Article  ADS  Google Scholar 

  55. Kroupa, P. On the variation of the initial mass function. Mon. Not. R. Astron. Soc. 322, 231–246 (2001).

    Article  ADS  Google Scholar 

  56. Feiden, G. A. & Chaboyer, B. Magnetic inhibition of convection and the fundamental properties of low-mass stars. I. Stars with a radiative core. Astrophys. J. 779, 183 (2013).

    Article  ADS  Google Scholar 

  57. Parker, E. N. Hydromagnetic dynamo models. Astrophys. J. 122, 293–314 (1955).

    Article  ADS  MathSciNet  Google Scholar 

  58. Morgan, D. P. et al. The effects of close companions (and rotation) on the magnetic activity of M dwarfs. Astron. J. 144, 93 (2012).

    Article  ADS  Google Scholar 

  59. Kraus, A. L., Tucker, R. A., Thompson, M. I., Craine, E. R. & Hillenbrand, L. A. The mass–radius(–rotation?) relation for low-mass stars. Astrophys. J. 728, 48 (2011).

    Article  ADS  Google Scholar 

  60. Benedict, G. F. et al. The Solar neighborhood. XXXVII: The mass–luminosity relation for main-sequence M dwarfs. Astron. J. 152, 141 (2016).

    Article  ADS  Google Scholar 

  61. Prša, A. & Zwitter, T. A computational guide to physics of eclipsing binaries. I. Demonstrations and perspectives. Astrophys. J. 628, 426–438 (2005).

    Article  ADS  Google Scholar 

  62. Prša, A. et al. Physics of eclipsing binaries. II. Toward the increased model fidelity. Astrophys. J. Suppl. Ser. 227, 29 (2016).

    Article  ADS  Google Scholar 

  63. Conroy, K. E. et al. Physics of eclipsing binaries. V. General framework for solving the inverse problem. Astrophys. J. Suppl. Ser. 250, 34 (2020).

    Article  ADS  Google Scholar 

  64. Claret, A. Limb and gravity-darkening coefficients for the TESS satellite at several metallicities, surface gravities, and microturbulent velocities. Astron. Astrophys. 600, A30 (2017).

    Article  ADS  Google Scholar 

  65. Morris, S. L. The ellipsoidal variable stars. Astrophys. J. 295, 143–152 (1985).

    Article  ADS  Google Scholar 

  66. Gomel, R., Faigler, S. & Mazeh, T. Search for dormant black holes in ellipsoidal variables I. Revisiting the expected amplitudes of the photometric modulation. Mon. Not. R. Astron. Soc. 501, 2822–2832 (2021).

    Article  ADS  Google Scholar 

  67. Rowan, D. M. et al. High tide: a systematic search for ellipsoidal variables in ASAS-SN. Mon. Not. R. Astron. Soc. 507, 104–115 (2021).

    Article  ADS  Google Scholar 

  68. Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: the MCMC hammer. Publ. Astron. Soc. Pac. 125, 306–312 (2013).

    Article  ADS  Google Scholar 

  69. Merle, T. et al. The Gaia-ESO Survey: double-, triple-, and quadruple-line spectroscopic binary candidates. Astron. Astrophys. 608, A95 (2017).

    Article  Google Scholar 

  70. Clark Cunningham, J. M. et al. APOGEE/Kepler overlap yields orbital solutions for a variety of eclipsing binaries. Astron. J. 158, 106 (2019).

    Article  ADS  Google Scholar 

  71. Traven, G. et al. The GALAH Survey: multiple stars and our Galaxy. I. A comprehensive method for deriving properties of FGK binary stars. Astron. Astrophys. 638, A145 (2020).

    Article  Google Scholar 

  72. Kounkel, M. et al. Double-lined spectroscopic binaries in the APOGEE DR16 and DR17 data. Astron. J. 162, 184 (2021).

    Article  ADS  Google Scholar 

  73. Li, C.-q et al. Double- and triple-line spectroscopic candidates in the LAMOST Medium-Resolution Spectroscopic Survey. Astrophys. J. Suppl. Ser. 256, 31 (2021).

    Article  ADS  Google Scholar 

  74. Tonry, J. & Davis, M. A survey of galaxy redshifts. I. Data reduction techniques. Astron. J. 84, 1511–1525 (1979).

    Article  ADS  Google Scholar 

  75. Rucinski, S. M. Spectral-line broadening functions of WUMa-type binaries. I. AW UMa. Astron. J. 104, 1968 (1992).

    Article  ADS  Google Scholar 

  76. Rucinski, S. Determination of broadening functions using the singular-value decomposition (SVD) technique. Astron. Soc. Pac. Conf. Ser. 185, 82 (1999).

  77. Gray, D. F. The Observation and Analysis of Stellar Photospheres (Cambridge Univ. Press, 2005).

  78. Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. Astron. Astrophys. 649, A2 (2021).

    Article  Google Scholar 

  79. Gandhi, P. et al. Astrometric excess noise in Gaia EDR3 and the search for X-ray binaries. Mon. Not. R. Astron. Soc. 510, 3885–3895 (2022).

    Article  ADS  Google Scholar 

  80. Belokurov, V. et al. Unresolved stellar companions with Gaia DR2 astrometry. Mon. Not. R. Astron. Soc. 496, 1922–1940 (2020).

    Article  ADS  Google Scholar 

  81. Bai, Y. et al. The UV emission of stars in the LAMOST Survey. I. Catalogs. Astrophys. J. Suppl. Ser. 235, 16 (2018).

    Article  ADS  Google Scholar 

  82. Boggess, A. et al. The IUE spacecraft and instrumentation. Nature 275, 372–377 (1978).

    Article  ADS  Google Scholar 

  83. Boggess, A. et al. In-flight performance of the IUE. Nature 275, 377–385 (1978).

    Article  ADS  Google Scholar 

  84. Rugheimer, S., Kaltenegger, L., Segura, A., Linsky, J. & Mohanty, S. Effect of UV radiation on the spectral fingerprints of Earth-like planets orbiting M stars. Astrophys. J. 809, 57 (2015).

    Article  ADS  Google Scholar 

  85. Hotan, A. W., van Straten, W. & Manchester, R. N. psrchive and psrfits: an open approach to radio pulsar data storage and analysis. Publ. Astron. Soc. Aust. 21, 302–309 (2004).

    Article  ADS  Google Scholar 

  86. Cordes, J. M. & Lazio, T. J. W. NE2001.I. A new model for the Galactic distribution of free electrons and its fluctuations. Preprint at https://arxiv.org/abs/astro-ph/0207156 (2002).

  87. Yao, J. M., Manchester, R. N. & Wang, N. A new electron-density model for estimation of pulsar and FRB distances. Astrophys. J. 835, 29 (2017).

    Article  ADS  Google Scholar 

  88. Ransom, S. M. New Search Techniques for Binary Pulsars. PhD thesis, Harvard Univ. (2001).

  89. Andersen, B. C. & Ransom, S. M. A Fourier domain ‘jerk’ search for binary pulsars. Astrophys. J. Lett. 863, L13 (2018).

    Article  ADS  Google Scholar 

  90. Wang, P. et al. FAST discovery of an extremely radio-faint millisecond pulsar from the Fermi-LAT unassociated source 3FGL J0318.1 + 0252. Sci. China Phys. Mech. Astron. 64, 129562 (2021).

    Article  ADS  Google Scholar 

  91. Jurić, M. et al. The Milky Way tomography with SDSS. I. Stellar number density distribution. Astrophys. J. 673, 864–914 (2008).

    Article  ADS  Google Scholar 

  92. Bensby, T., Feltzing, S. & Lundström, I. Elemental abundance trends in the Galactic thin and thick disks as traced by nearby F and G dwarf stars. Astron. Astrophys. 410, 527–551 (2003).

    Article  ADS  Google Scholar 

  93. Koester, D. White dwarf spectra and atmosphere models. Mem. Soc. Astron. Ital. 81, 921–931 (2010).

    ADS  Google Scholar 

  94. Parsons, S. G. et al. Magnetic white dwarfs in post-common-envelope binaries. Mon. Not. R. Astron. Soc. 502, 4305–4327 (2021).

    Article  ADS  Google Scholar 

  95. Liebert, J. et al. Where are the magnetic white dwarfs with detached, nondegenerate companions? Astron. J. 129, 2376–2381 (2005).

    Article  ADS  Google Scholar 

  96. Schreiber, M. R., Belloni, D., Gaensicke, B. T., Parsons, S. G. & Zorotovic, M. The origin and evolution of magnetic white dwarfs in close binary stars. Nat. Astron. 5, 648–654 (2021).

    Article  ADS  Google Scholar 

  97. Breton, R. P. et al. Discovery of the optical counterparts to four energetic Fermi millisecond pulsars. Astrophys. J. 769, 108 (2013).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank Y.-J. Lei, D. Price, A. Heger, C.-Y. Song, D. Li, X.-D. Chen, W.-K. Zong, X.-G. Wang, Q.-Y. Wu, J.-H. Liu, X.-D. Fu, Y.-P. Yang, X.-W. Liu, Y.-H. Song and T.R. Marsh for beneficial discussions. W.-M.G. acknowledges support from the National Key R&D Program of China under grant 2021YFA1600401, and the National Natural Science Foundation of China (NSFC) under grants 11925301 and 12033006. M.-Y.S. acknowledges support from the NSFC under grant 11973002. J.-F.L. acknowledges support from the NSFC under grants 11988101 and 11933004. Z.-X.Z. acknowledges support from the NSFC under grant 12103041. J.-F. Wang acknowledges support from the NSFC under grant U1831205. J.-F. Wu acknowledges support from the NSFC under grant U1938105. X.-D.L. acknowledges support from the NSFC under grants 12041301 and 12121003. P.W. acknowledges support from the NSFC under grant U2031117, the Youth Innovation Promotion Association CAS (id 2021055), CAS Project for Young Scientists in Basic Research (grant YSBR-006) and the Cultivation Project for FAST Scientific Payoff and Research Achievement of CAMS-CAS. J.-R.S. acknowledges support from the NSFC under grant 12090044. J.Z. acknowledges support from the NSFC under grant 11933008. H.-J.M. acknowledges support from the NSFC under grant 12103047. T.Y. acknowledges support from the China Postdoctoral Science Foundation under grant 2021M702742. Guoshoujing Telescope (LAMOST) is a National Major Scientific Project built by the Chinese Academy of Sciences. Funding for the project has been provided by the National Development and Reform Commission. LAMOST is operated and managed by the National Astronomical Observatories, Chinese Academy of Sciences. This research uses data obtained through the Telescope Access Program (TAP), which has been funded by the TAP member institutes. This work made use of the data from FAST. FAST is a Chinese national mega-science facility, operated by National Astronomical Observatories, Chinese Academy of Sciences. Funding for the TESS mission is provided by NASA’s Science Mission directorate. This research made use of Lightkurve, a Python package for Kepler and TESS data analysis37. Based on observations obtained with the Samuel Oschin 48 in. Telescope at the Palomar Observatory as part of the ZTF project. ZTF is supported by the National Science Foundation under grant AST-1440341 and a collaboration including Caltech, IPAC, the Weizmann Institute for Science, the Oskar Klein Center at Stockholm University, the University of Maryland, the University of Washington, Deutsches Elektronen-Synchrotron and Humboldt University, Los Alamos National Laboratories, the TANGO Consortium of Taiwan, the University of Wisconsin at Milwaukee and Lawrence Berkeley National Laboratories. Operations are conducted by COO, IPAC and UW.

Author information

Authors and Affiliations

Authors

Contributions

T.Y., W.-M.G. and J.-F.L. led the project. W.-M.G. proposed the follow-up optical observations and coordinated the spectroscopic and photometric data reduction and analysis, with substantial inputs from T.Y., M.-Y.S., Z.-X.Z., S.W., Y.B. and L.-L.Z. Z.-R.B. and H.-T.Z. contributed to the early discovery of J1123. W.-M.G., J.-F. Wang and J.-F. Wu contributed their expertise on the P200 proposals and observations. Y.B. and Z.-X.Z. contributed to the P200 data reduction and analyses. T.Y., Q.-Z.Y. and W.-M.G. proposed the follow-up radio observations. P.W. contributed to the expertise of FAST’s data reduction and analyses. Z.-X.Z. and M.-Y.S. solved the orbital solution using PHOEBE; S.W. and J.Z. validated the orbital solution independently. T.Y., W.-M.G., M.-Y.S., J.-F.L. and P.W. presented the physical interpretation of the data and wrote the manuscript. All authors reviewed and contributed to the manuscript.

Corresponding authors

Correspondence to Wei-Min Gu, Mouyuan Sun or Jifeng Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–4 and Figs. 1–10.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, T., Gu, WM., Zhang, ZX. et al. A dynamically discovered and characterized non-accreting neutron star–M dwarf binary candidate. Nat Astron 6, 1203–1212 (2022). https://doi.org/10.1038/s41550-022-01766-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-022-01766-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing