Surface clay formation during short-term warmer and wetter conditions on a largely cold ancient Mars

Published online:


The ancient rock record for Mars has long been at odds with climate modelling. The presence of valley networks, dendritic channels and deltas on ancient terrains points towards running water and fluvial erosion on early Mars1, but climate modelling indicates that long-term warm conditions were not sustainable2. Widespread phyllosilicates and other aqueous minerals on the Martian surface3,4,5,6 provide additional evidence that an early wet Martian climate resulted in surface weathering. Some of these phyllosilicates formed in subsurface crustal environments5, with no association with the Martian climate, while other phyllosilicate-rich outcrops exhibit layered morphologies and broad stratigraphies7 consistent with surface formation. Here, we develop a new geochemical model for early Mars to explain the formation of these clay-bearing rocks in warm and wet surface locations. We propose that sporadic, short-term warm and wet environments during a generally cold early Mars enabled phyllosilicate formation without requiring long-term warm and wet conditions. We conclude that Mg-rich clay-bearing rocks with lateral variations in mixed Fe/Mg smectite, chlorite, talc, serpentine and zeolite occurrences formed in subsurface hydrothermal environments, whereas dioctahedral (Al/Fe3+-rich) smectite and widespread vertical horizonation of Fe/Mg smectites, clay assemblages and sulphates formed in variable aqueous environments on the surface of Mars. Our model for aluminosilicate formation on Mars is consistent with the observed geological features, diversity of aqueous mineralogies in ancient surface rocks and state-of-the-art palaeoclimate scenarios.

  • Subscribe to Nature Astronomy for full access:



Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Hynek, B. M., Beach, M. & Hoke, M. R. T. Updated global map of Martian valley networks and implications for climate and hydrologic processes. J. Geophys. Res. 115, E09008 (2010).

  2. 2.

    Wordsworth, R. et al. Transient reducing greenhouse warming on early Mars. Geophys. Res. Lett. 44, 665–671 (2017).

  3. 3.

    Murchie, S. L. et al. A synthesis of Martian aqueous mineralogy after 1 Mars year of observations from the Mars Reconnaissance Orbiter. J. Geophys. Res. 114, E00D06 (2009).

  4. 4.

    Carter, J., Loizeau, D., Mangold, N., Poulet, F. & Bibring, J.-P. Widespread surface weathering on early Mars: a case for a warmer and wetter climate. Icarus 248, 373–382 (2015).

  5. 5.

    Ehlmann, B. L. et al. Subsurface water and clay mineral formation during the early history of Mars. Nature 479, 53–60 (2011).

  6. 6.

    Vaniman, D. T. et al. Mineralogy of a mudstone at Yellowknife Bay, Gale Crater, Mars. Science 343, 1243480 (2014).

  7. 7.

    Bishop, J. L. et al. Phyllosilicate diversity and past aqueous activity revealed at Mawrth Vallis, Mars. Science 321, 1159830–1159833 (2008).

  8. 8.

    Fassett, C. I. & Head, J. W. Valley network-fed, open-basin lakes on Mars: distribution and implications for Noachian surface and subsurface hydrology. Icarus 198, 37–56 (2008).

  9. 9.

    Chamley, H. Clay Sedimentology (Springer, Berlin, Germany, 1989).

  10. 10.

    Michalski, J. R. et al. Constraints on the crystal-chemistry of Fe/Mg-rich smectitic clays on Mars and links to global alteration trends. Earth Planet. Sci. Lett. 427, 215–225 (2015).

  11. 11.

    Benson, L. V. & Teague, L. S. Diagenesis of basalts from the Pasco Basin, Washington—I. Distribution and composition of secondary mineral phases. J. Sediment. Res. 52, 595–613 (1982).

  12. 12.

    Ehlmann, B. L. et al. Identification of hydrated silicate minerals on Mars using MRO-CRISM: geologic context near Nili Fossae and implications for aqueous alteration. J. Geophys. Res. 114, E00D08 (2009).

  13. 13.

    Viviano, C. E., Moersch, J. E. & McSween, H. Y. Implications for early hydrothermal environments on Mars through the spectral evidence for carbonation and chloritization reactions in the Nili Fossae region. J. Geophys. Res. 118, 1858–1872 (3013).

  14. 14.

    Bishop, J. L. et al. What the ancient phyllosilicates at Mawrth Vallis can tell us about possible habitability on early Mars. Planet. Space Sci. 86, 130–149 (2013).

  15. 15.

    Noe Dobrea, E. Z. et al. Mineralogy and stratigraphy of phyllosilicate-bearing and dark mantling units in the greater Mawrth Vallis/west Arabia Terra area: constraints on geological origin. J. Geophys. Res. 115, E00D19 (2010).

  16. 16.

    Loizeau, D. et al. Stratigraphy in the Mawrth Vallis region through OMEGA, HRSC color imagery and DTM. Icarus 205, 396–418 (2010).

  17. 17.

    Bishop, J. L. & Rampe, E. B. Evidence for a changing Martian climate from the mineralogy at Mawrth Vallis. Earth Planet. Sci. Lett. 448, 42–48 (2016).

  18. 18.

    Bristow, T. F. et al. Surveying clay mineral diversity in the Murray formation, Gale Crater, Mars. In Proc. 48th Lunar Planet. Sci. Conf. 2462 (2017).

  19. 19.

    Rampe, E. B. et al. Allophane detection on Mars with Thermal Emission Spectrometer data and implications for regional-scale chemical weathering processes. Geology 40, 995–998 (2012).

  20. 20.

    Parfitt, R. L. Allophane and imogolite: role in soil biogeochemical processes. Clay Miner. 44, 135–155 (2009).

  21. 21.

    Rasmussen, C., Dahlgren, R. A. & Southard, R. J. Basalt weathering and pedogenesis across an environmental gradient in the southern Cascade Range, California, USA. Geoderma 154, 473–485 (2010).

  22. 22.

    Bishop, J. L. et al. Mineralogical analyses of surface sediments in the Antarctic Dry Valleys: coordinated analyses of Raman spectra, reflectance spectra and elemental abundances. Phil. Trans. R. Soc. A 372, 20140198 (2014).

  23. 23.

    Kloprogge, J. T., Komarneni, S. & Amonette, J. Synthesis of smectite clay minerals: a critical review. Clays Clay Miner. 47, 529–554 (1999).

  24. 24.

    Fairén, A. G. A cold and wet Mars. Icarus 208, 165–175 (2010).

  25. 25.

    Fairén, A. G. et al. Cold glacial oceans would have inhibited phyllosilicate sedimentation on early Mars. Nat. Geosci. 4, 667–670 (2011).

  26. 26.

    Head, J. W. & Marchant, D. R. The climate history of early Mars: insights from the Antarctic McMurdo Dry Valleys hydrologic system. Antarct. Sci. 26, 774–800 (2014).

  27. 27.

    Decarreau, A., Petit, S., Martin, F., Vieillard, P. & Joussein, E. Hydrothermal synthesis, between 75 and 150°C, of high-charge ferric nontronites. Clays Clay Miner. 56, 322–337 (2008).

  28. 28.

    Hobbs, K. M. & Parrish, J. T. Miocene global change recorded in Columbia River basalt-hosted paleosols. Geol. Soc. Am. Bull. 128, 1543–1554 (2016).

  29. 29.

    Price, J. R., Velbel, M. A. & Patino, L. C. Rates and time scales of clay-mineral formation by weathering in saprolitic regoliths of the southern Appalachians from geochemical mass balance. Geol. Soc. Am. Bull. 117, 783–794 (2005).

  30. 30.

    Bishop, J. L. et al. Mineralogy and morphology of geologic units at Libya Montes, Mars: ancient aqueous outcrops, mafic flows, fluvial features and impacts. J. Geophys. Res. 118, 487–513 (2013).

  31. 31.

    Segura, T. L., Toon, O. B., Colaprete, A. & Zahnle, K. Environmental effects of large impacts on Mars. Science 298, 1977–1980 (2002).

  32. 32.

    Gwinner, K. et al. The High Resolution Stereo Camera (HRSC) of Mars Express and its approach to science analysis and mapping for Mars and its satellites. Planet. Space Sci. 126, 93–138 (2016).

  33. 33.

    Michael, G. G. et al. Systematic processing of Mars Express HRSC panchromatic and colour image mosaics: image equalisation using an external brightness reference. Planet. Space Sci. 121, 18–26 (2016).

  34. 34.

    Blum, A. E. & Stillings, L. L. in Chemical Weathering Rates of Silicate Minerals Vol. 31 (eds White, A. F. & Brantley, S. L.) 291–352 (Mineralogical Society of America, Washington DC, USA, 1995).

  35. 35.

    Dove, P. M. in Chemical Weathering Rates of Silicate Minerals Vol. 31 (eds White, A. F. & Brantley, S. L.) 235–290 (Mineralogical Society of America, Washington DC, USA, 1995).

  36. 36.

    Köhler, S. J., Bosbach, D. & Oelkers, E. H. Do clay mineral dissolution rates reach steady state? Geochim. Cosmochim. Acta 69, 1997–2006 (2005).

  37. 37.

    Aagaard, P. & Helgeson, H. C. Thermodynamic and kinetic constraints on reaction rates among minerals and aqueous solutions. I. Theoretical considerations. Am. J. Sci. 282, 237–285 (1982).

  38. 38.

    Sverdrup, H. & Warfvinge, P. in Chemical Weathering Rates of Silicate Minerals Vol. 31 (eds White, A. F. & Brantley, S. L.) 485–542 (Mineralogical Society of America, Washington DC, USA, 1995).

  39. 39.

    Palandri, J. L. & Kharaka, Y. K. A Compilation of Rate Parameters of Water–Mineral Interaction Kinetics for Application to Geochemical Modeling (US Department of the Interior & US Geological Survey, Menlo Park, CA, 2004).

  40. 40.

    Mustard, J. F. et al. Hydrated silicate minerals on Mars observed by the Mars Reconnaissance Orbiter CRISM instrument. Nature 454, 305–309 (2008).

  41. 41.

    Poulet, F. et al. Phyllosilicates on Mars and implications for early Martian climate. Nature 438, 623–627 (2005).

  42. 42.

    Ansan, V., Mangold, N., Masson, P., Gailhardis, E. & Neukum, G. Topography of valley networks on Mars from Mars Express High Resolution Stereo Camera digital elevation models. J. Geophys. Res. 113, E07006 (2008).

  43. 43.

    Fassett, C. I. & Head, J. W. Sequence and timing of conditions on early Mars. Icarus 211, 1204–1214 (2011).

  44. 44.

    Craddock, R. A. & Howard, A. D. The case for rainfall on a warm, wet early Mars. J. Geophys. Res. 107, 21-1–21-36 (2002).

  45. 45.

    Squyres, S. W. & Kasting, J. F. Early Mars: how warm and how wet? Science 265, 744–749 (1994).

  46. 46.

    Head, J. W. Late Noachian climate of Mars: Constraints from valley network system formation times and the intermittencies (episodic/periodic and punctuated). In Proc. 48th Lunar Planet. Sci. Conf. 1538 (2017).

  47. 47.

    Gross, C. et al. Mawrth Vallis—an auspicious destination for the ESA and NASA 2020 landers. In Proc. 48th Lunar Planet. Sci. Conf. 2194 (2017).

  48. 48.

    Weitz, C. M., Bishop, J. L., Baker, L. L. & Berman, D. C. Fresh exposures of hydrous Fe-bearing amorphous silicates on Mars. Geophys. Res. Lett. 41, 8744–8751 (2014).

  49. 49.

    Murchie, S. L. et al. The Compact Reconnaissance Imaging Spectrometer for Mars investigation and data set from the Mars Reconnaissance Orbiter’s primary science phase. J. Geophys. Res. 114, E00D07 (2009).

  50. 50.

    Christensen, P. R. et al. Mars Global Surveyor Thermal Emission Spectrometer experiment: investigation description and surface science results. J. Geophys. Res. 106, 23823–23871 (2001).

  51. 51.

    McKeown, N. K. et al. Characterization of phyllosilicates observed in the central Mawrth Vallis region, Mars, their potential formational processes, and implications for past climate. J. Geophys. Res. 114, E00D10 (2009).

  52. 52.

    Blake, D. F. et al. Curiosity at Gale Crater, Mars: characterization and analysis of the Rocknest sand shadow. Science 341, 1239505 (2013).

  53. 53.

    Bristow, T. F. et al. The origin and implications of clay minerals from Yellowknife Bay, Gale Crater, Mars. Am. Mineral. 100, 824–836 (2015).

  54. 54.

    Ming, D. W. et al. Volatile and organic compositions of sedimentary rocks in Yellowknife Bay, Gale Crater, Mars. Science 343, 1245267 (2014).

  55. 55.

    Henmi, T. & Wada, K. Morphology and composition of allophane. Am. Mineral. 61, 379–390 (1976).

  56. 56.

    Bishop, J. L. et al. Spectral and hydration properties of allophane and imogolite. Clays Clay Miner. 61, 57–74 (2013).

  57. 57.

    Parfitt, R. L. & Henmi, T. Structure of some allophanes from New Zealand. Clays Clay Miner. 28, 285–294 (1980).

  58. 58.

    Kaufhold, S. et al. A new massive deposit of allophane raw material in Ecuador. Clays Clay Miner. 57, 72–81 (2009).

  59. 59.

    Wada, K., Henmi, T., Yoshinaga, N. & Patterson, S. H. Imogolite and allophane formed in saprolite of basalt on Maui, Hawaii. Clays Clay Miner. 20, 375–380 (1972).

  60. 60.

    Parfitt, R. L., Childs, C. W. & Eden, D. N. Ferrihydrite and allophane in four andepts from Hawaii and implications for their classification. Geoderma 41, 223–241 (1988).

  61. 61.

    Farmer, V. C., Adams, M. J., Fraser, A. R. & Palmieri, F. Synthetic imogolite: properties, synthesis, and possible applications. Clay Miner. 18, 459–472 (1983).

  62. 62.

    Wada, S. I., Eto, A. & Wada, K. Synthetic allophane and imogolite. J. Soil. Sci. 30, 347–355 (1979).

  63. 63.

    Abidin, Z., Matsue, N. & Henmi, T. Differential formation of allophane and imogolite: experimental and molecular orbital study. J. Comput. Aided Mater. Des. 14, 5–18 (2007).

  64. 64.

    Baker, L. L., Nickerson, R. D. & Strawn, D. G. XAFS study of Fe-substituted allophane and imogolite. Clays Clay Miner. 62, 20–34 (2014).

  65. 65.

    Scudder, N. A., Horgan, B., Rutledge, A. M. & Rampe, E. B. Using composition to trace glacial, fluvial, and aeolian sediment transport in a Mars-analog glaciated volcanic system. In Proc. 48th Lunar Planet. Sci. Conf. 2625 (2017).

  66. 66.

    Thorpe, M. T., Hurowitz, J. A. & Dehouck, E. A frigid terrestrial analog for the paleoclimate of Mars. In Proc. 48th Lunar Planet. Sci. Conf. 2599 (2017).

  67. 67.

    Eberl, D. D., Farmer, V. C. & Barrer, R. M. Clay mineral formation and transformation in rocks and soils [and discussion]. Philos. Trans. R. Soc. Lond. A 311, 241–257 (1984).

  68. 68.

    Harder, H. Synthesis of iron layer silicate minerals under natural conditions. Clays Clay Miner. 26, 65–72 (1978).

  69. 69.

    McKay, D. S. et al. Search for past life on Mars: possible relic biogenic activity in Martian meteorite ALH 84001. Science 273, 924–930 (1996).

  70. 70.

    Hicks, L. J., Bridges, J. C. & Gurman, S. J. Ferric saponite and serpentine in the nakhlite Martian meteorites. Geochim. Cosmochim. Acta 136, 194–210 (2014).

  71. 71.

    Velbel, M. A. Aqueous corrosion of olivine in the Mars meteorite Miller Range (MIL) 03346 during Antarctic weathering: implications for water on Mars. Geochim. Cosmochim. Acta 180, 126–145 (2016).

  72. 72.

    Hallis, L. J., Ishii, H. A., Bradley, J. P. & Taylor, G. J. Transmission electron microscope analyses of alteration phases in Martian meteorite MIL 090032. Geochim. Cosmochim. Acta 134, 275–288 (2014).

  73. 73.

    Schwenzer, S. P. et al. Diagenesis on Mars: Insights into noble gas pathways and newly formed mineral assemblages from long term experiments. In Proc. 48th Lunar Planet. Sci. Conf. 1344 (2017).

  74. 74.

    Bridges, J. C. et al. Alteration assemblages in Martian meteorites: implications for near-surface processes. Space Sci. Rev. 96, 365–392 (2001).

  75. 75.

    Bischoff, J. L. A ferroan nontronite from the Red Sea geothermal system. Clays Clay Miner. 20, 217–223 (1972).

  76. 76.

    Allen, V. T. & Scheid, V. E. Nontronite in the Columbia River region. Am. Mineral. 31, 294–312 (1946).

  77. 77.

    Baker, L. L. & Strawn, D. G. Temperature effects on the crystallinity of synthetic nontronite and implications for nontronite formation in Columbia River basalts. Clays Clay Miner. 62, 89–101 (2014).

  78. 78.

    Thomson, B. J. et al. The effects of weathering on the strength and chemistry of Columbia River basalts and their implications for Mars Exploration Rover Rock Abrasion Tool (RAT) results. Earth Planet. Sci. Lett. 400, 130–144 (2014).

  79. 79.

    Sheldon, N. D. Using paleosols of the Picture Gorge basalt to reconstruct the middle Miocene climatic optimum. PaleoBios 26, 27–36 (2006).

  80. 80.

    Baker, L. L. Formation of the ferruginous smectite Swa-1 by alteration of soil clays. Am. Mineral. 102, 33–41 (2017).

  81. 81.

    Takeuchi, A., Larson, P. B. & Suzuki, K. Influence of paleorelief on the mid-Miocene climate variation in southeastern Washington, northeastern Oregon, and western Idaho, USA. Palaeogeogr. Palaeoclimatol. Palaeoecol. 254, 462–476 (2007).

  82. 82.

    Allen, V. T. Formation of bauxite from basaltic rocks of Oregon. Econ. Geol. 43, 619–626 (1948).

  83. 83.

    Liu, X.-M., Rudnick, R. L., McDonough, W. F. & Cummings, M. L. Influence of chemical weathering on the composition of the continental crust: insights from Li and Nd isotopes in bauxite profiles developed on Columbia River basalts. Geochim. Cosmochim. Acta 115, 73–91 (2013).

  84. 84.

    Hearn, P. P. Jr, Steinkampf, W. C., White, L. D. & Evans, J. R. in Safe Disposal of Radionuclides in Low-Level Radioactive Waste Repository Sites: Low-Level Radioactive Waste Disposal Workshop (eds Bedinger, M. S. & Stevens, P. R.) 63–68 (US Geological Survey, Washington DC, USA, 1988).

  85. 85.

    Ryan, P. C. & Hillier, S. Berthierine/chamosite, corrensite, and discrete chlorite from evolved verdine and evaporite-associated facies in the Jurassic Sundance Formation, Wyoming. Am. Mineral. 87, 1607–1615 (2002).

  86. 86.

    Ehlmann, B. L. et al. Orbital identification of carbonate-bearing rocks on Mars. Science 322, 1828–1832 (2008).

  87. 87.

    Ehlmann, B. L., Mustard, J. F. & Murchie, S. L. Geologic setting of serpentine deposits on Mars. Geophys. Res. Lett. 37, L06201 (2010).

  88. 88.

    Brown, A. J. et al. Hydrothermal formation of clay–carbonate alteration assemblages in the Nili Fossae region of Mars. Earth Planet. Sci. Lett. 297, 174–182 (2010).

  89. 89.

    Ehlmann, B. L. & Mustard, J. F. An in-situ record of major environmental transitions on early Mars at Northeast Syrtis Major. Geophys. Res. Lett. 39, L11202 (2012).

  90. 90.

    Bishop, J. L., Gates, W. P., Makarewicz, H. D., McKeown, N. K. & Hiroi, T. Reflectance spectroscopy of beidellites and their importance for Mars. Clays Clay Miner. 59, 376–397 (2011).

  91. 91.

    Guisseau, D. et al. Significance of the depth-related transition montmorillonite–beidellite in the Bouillante geothermal field (Guadeloupe, Lesser Antilles). Am. Mineral. 92, 1800–1813 (2007).

  92. 92.

    Meunier, A. & Velde, B. Illite: Origins, Evolution and Metamorphism (Springer, Berlin, Germany, 2004).

  93. 93.

    Beaufort, D., Berger, G., Lacharpagne, J. C. & Meunier, A. An experimental alteration of montmorillonite to a di + trioctahedral smectite assemblage at 100 and 200°C. Clay Miner. 36, 211–225 (2001).

  94. 94.

    Hurowitz, J. A. et al. Redox stratification of an ancient lake in Gale Crater, Mars. Science 356, eaah6849 (2017).

  95. 95.

    Bridges, J. C. et al. Diagenesis and clay mineral formation at Gale Crater, Mars. J. Geophys. Res. Planets 120, 1–19 (2015).

  96. 96.

    Schwenzer, S. P. et al. Fluids during diagenesis and sulfate vein formation in sediments at Gale Crater, Mars. Meteorit. Planet. Sci. 51, 2175–2202 (2016).

  97. 97.

    Lowe, D. J. in Rates of Chemical Weathering of Rocks and Minerals (eds Colman, S. M. & Dethier, D. P.) 265–329 (Academic Press, New York, USA, 1986).

  98. 98.

    Wilson, L. & Head, J. W. Explosive volcanic eruptions on Mars: tephra and accretionary lapilli formation, dispersal and recognition in the geologic record. J. Volcanol. Geotherm. Res. 163, 83–97 (2007).

  99. 99.

    Laskar, J. et al. Long term evolution and chaotic diffusion of the insolation quantities of Mars. Icarus 170, 343–364 (2004).

  100. 100.

    Jakosky, B. M. & Phillips, R. J. Mars’ volatile and climate history. Nature 412, 237–244 (2001).

  101. 101.

    Kite, E. S. et al. Methane bursts as a trigger for intermittent lake-forming climates on post-Noachian Mars. Nat. Geosci. 10, 737–740 (2017).

  102. 102.

    Tanaka, K. L., Robbins, S. J., Fortezzo, C. M., Skinner, J. A. & Hare, T. M. The digital global geologic map of Mars: chronostratigraphic ages, topographic and crater morphologic characteristics, and updated resurfacing history. Planet. Space Sci. 95, 11–24 (2014).

Download references


The authors are grateful for support from the National Aeronautics and Space Administration Astrobiology Institute (grant NNX15BB01 to J.L.B.) and Mars Data Analysis Program (grant NNX12AJ33G to J.L.B.), as well as the project ‘icyMARS’, European Research Council Starting Grant 307496 (to A.G.F.), a Smithsonian Senior Fellowship (to M.A.V.) and Deutsches Zentrum für Luft- und Raumfahrt grant 50QM1702 ‘HRSC on Mars Express’ on behalf of the German Federal Ministry for Economic Affairs and Energy (to C.G.). The authors also thank L. Maltagliati, J. W. Head, J. F. Mustard and S. Clifford for helpful comments that improved the manuscript.

Author information


  1. SETI Institute, Mountain View, CA, USA

    • Janice L. Bishop
  2. National Aeronautics and Space Administration’s Ames Research Center, Moffett Field, CA, USA

    • Janice L. Bishop
  3. Centro de Astrobiología (Consejo Superior de Investigaciones Científicas–Instituto Nacional de Técnica Aeroespacial), Madrid, Spain

    • Alberto G. Fairén
  4. Cornell University, Ithaca, NY, USA

    • Alberto G. Fairén
  5. Department of Earth Sciences & Laboratory for Space Research, University of Hong Kong, Hong Kong, China

    • Joseph R. Michalski
  6. University of Vigo, Vigo, Spain

    • Luis Gago-Duport
  7. University of Idaho, Moscow, ID, USA

    • Leslie L. Baker
  8. Michigan State University, East Lansing, MI, USA

    • Michael A. Velbel
  9. Smithsonian Institution, Washington, DC, USA

    • Michael A. Velbel
  10. Freie Universität Berlin, Berlin, Germany

    • Christoph Gross
  11. National Aeronautics and Space Administration–Johnson Space Center, Houston, TX, USA

    • Elizabeth B. Rampe


  1. Search for Janice L. Bishop in:

  2. Search for Alberto G. Fairén in:

  3. Search for Joseph R. Michalski in:

  4. Search for Luis Gago-Duport in:

  5. Search for Leslie L. Baker in:

  6. Search for Michael A. Velbel in:

  7. Search for Christoph Gross in:

  8. Search for Elizabeth B. Rampe in:


J.L.B. generated the idea of short-term warm and wet events, performed remote sensing of Mars using orbital visible and near-infrared spectra and wrote most of the paper. A.G.F. contributed preliminary discussions defining the direction of the project and provided insights on the nature of the early Mars climate, thermodynamics of clay minerals and current Mars Science Laboratory rover results. J.R.M. provided analyses of Fe/Mg phyllosilicates from hydrothermal ocean environments and remote sensing results of Mars, and prepared figures. L.G.-D. conducted the clay synthesis modelling and prepared figures. L.L.B. contributed insights on basalt alteration and the formation of clays and poorly crystalline phases. M.A.V. provided insights on the weathering of Martian meteorites and basalt. C.G. prepared the HRSC and HiRISE images. E.B.R. contributed analyses of poorly crystalline phases of Mars in remote sensing thermal infrared emission orbital spectra and provided insights on current Mars Science Laboratory rover results regarding clays and poorly crystalline materials. All authors contributed to writing and commenting on drafts of the paper.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Janice L. Bishop.

Supplementary information

  1. Supplementary Information

    Supplementary Figures 1–3.