Abstract

Stardust grains recovered from meteorites provide high-precision snapshots of the isotopic composition of the stellar environment in which they formed 1 . Attributing their origin to specific types of stars, however, often proves difficult. Intermediate-mass stars of 4–8 solar masses are expected to have contributed a large fraction of meteoritic stardust 2,3 . Yet, no grains have been found with the characteristic isotopic compositions expected for such stars 4,5 . This is a long-standing puzzle, which points to serious gaps in our understanding of the lifecycle of stars and dust in our Galaxy. Here we show that the increased proton-capture rate of 17O reported by a recent underground experiment 6 leads to 17O/16O isotopic ratios that match those observed in a population of stardust grainsfor proton-burning temperatures of 60–80 MK. These temperatures are achieved at the base of the convective envelope during the late evolution of intermediate-mass stars of 4–8 solar masses 7,​8,​9 , which reveals them as the most likely site of origin of the grains. This result provides direct evidence that these stars contributed to the dust inventory from which the Solar System formed.

  • Subscribe to Nature Astronomy for full access:

    $99

    Subscribe

Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

References

  1. 1.

    in Treatise on Geochemistry 2nd edn, Vol. 1 (ed. Davis, A. M. ) 181–213 (Elsevier, 2014).

  2. 2.

    , , & Stardust from asymptotic giant branch stars. Astrophys. J. 698, 1136–1154 (2009).

  3. 3.

    , & Can star cluster environment affect dust input from massive AGB stars? Astrophys. J. 810, 128 (2015).

  4. 4.

    et al. On the asymptotic giant branch star origin of peculiar spinel grain OC2. Astron. Astrophys. 461, 657–664 (2007).

  5. 5.

    , , , & New reaction rate for 16O(p,γ)17F and its influence on the oxygen isotopic ratios in massive AGB stars. Phys. Rev. C 77, 045802 (2008).

  6. 6.

    et al. Improved direct measurement of the 64.5 keV resonance strength in the 17O(p, α)14N reaction at LUNA. Phys. Rev. Lett. 117, 142502 (2016).

  7. 7.

    , , & Yields of AGB and SAGB models with chemistry of low- and high-metallicity globular clusters. Mon. Not. R. Astron. Soc. 431, 3642–3653 (2013).

  8. 8.

    , , & Evolution, nucleosynthesis, and yields of AGB stars at different metallicities. III. Intermediate-mass models, revised low-mass models, and the ph-FRUITY interface. Astrophys. J. Suppl. 219, 40 (2015).

  9. 9.

    & Stellar yields from metal-rich asymptotic giant branch models. Astrophys. J. 825, 26 (2016).

  10. 10.

    , , , & Stellar sapphires: The properties and origins of presolar Al2O3 in meteorites. Astrophys. J. 483, 475–495 (1997).

  11. 11.

    , & Long-period variables in the Magellanic Clouds: Supergiants, AGB stars, supernova precursors, planetary nebula precursors, and enrichment of the interstellar medium. Astrophys. J. 272, 99–115 (1983).

  12. 12.

    , , , & Charged-particle thermonuclear reaction rates: II. Tables and graphs of reaction rates and probability density functions. Nucl. Phys. A 841, 31–250 (2010).

  13. 13.

    , & Cool bottom processes on the thermally pulsing asymptotic giant branch and the isotopic composition of circumstellar dust grains. Astrophys. J. 582, 1036–1058 (2003).

  14. 14.

    , , & Deep mixing in evolved stars. I. The effect of reaction rate revisions from C to Al. Astrophys. J. 729, 3 (2011).

  15. 15.

    & Magnetohydrodynamics and deep mixing in evolved stars. I. two- and three-dimensional analytical models for the asymptotic giant branch. Astrophys. J. 787, 141 (2014).

  16. 16.

    et al. High-intensity-beam study of 17O(p, γ)18F and thermonuclear reaction rates for 17O+p. Phys. Rev. C 91, 015812 (2015).

  17. 17.

    et al. Herschel observations of extreme OH/IR stars. The isotopic ratios of oxygen as a sign-post for the stellar mass. Astron. Astrophys. 578, A115 (2015).

  18. 18.

    et al. Automated NanoSIMS measurements of spinel stardust from the Murray meteorite. Astrophys. J. 717, 107–120 (2010).

  19. 19.

    et al. Aluminum-, calcium- and titanium-rich oxide stardust in ordinary chondrite meteorites. Astrophys. J. 682, 1450–1478 (2008).

  20. 20.

    et al. Impact of a revised 25Mg(p, γ)26Al reaction rate on the operation of the Mg-Al cycle. Astrophys. J. 763, 100 (2013).

  21. 21.

    & In 40th Lunar and Planetary Science Conference Abstract 1198 (Lunar and Planetary Institute, 2009); .

  22. 22.

    , , & The chemical composition of the Sun. Ann. Rev. Astron. Astrophys. 47, 481–522 (2009).

  23. 23.

    Helium enrichment and carbon-star production in metal-rich populations. Mon. Not. R. Astron. Soc. 445, 347–358 (2014).

  24. 24.

    Updated stellar yields from asymptotic giant branch models. Mon. Not. R. Astron. Soc. 403, 1413–1425 (2010).

  25. 25.

    & Evolution of low- and intermediate-mass stars to the end of the asymptotic giant branch with mass loss. Astrophys. J. 413, 641–657 (1993).

  26. 26.

    & Low-temperature gas opacity. ÆSOPUS: a versatile and quick computational tool. Astron. Astrophys. 508, 1539–1569 (2009).

  27. 27.

    The asymptotic giant branch evolution of 1.0–3.0 solar mass stars as a function of mass and composition. Astrophys. J. 311, 708–730 (1986).

  28. 28.

    , & Reaction rates for the s-process neutron source 22Ne + α . Phys. Rev. C 85, 065809 (2012).

Download references

Acknowledgements

We thank O. Pols and R. Izzard for useful insights on binary systems and P. Marigo for discussion of our results. M.L. is a Momentum (‘Lendìlet-2014’ Programme) project leader of the Hungarian Academy of Sciences. M.L. and A.I.K. are grateful for the support of the National Computational Infrastructure National Facility at the Australian National University.

Author information

Author notes

    • D. A. Scott

    Present address: Communications Audit UK, Aerotech Business Park, Bamfurlong Lane, Cheltenham GL51 6ST, UK

Affiliations

  1. Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, 1121 Budapest, Hungary

    • M. Lugaro
  2. Monash Centre for Astrophysics (MoCA), Monash University, Clayton, Victoria 3800, Australia

    • M. Lugaro
    •  & A. I. Karakas
  3. Research School of Astronomy and Astrophysics, Australian National University, Canberra, Australian Capital Territory 2611, Australia

    • A. I. Karakas
  4. Kavli Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo, Kashiwa, Chiba 277-8583, Japan

    • A. I. Karakas
  5. SUPA, School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3FD, UK

    • C. G. Bruno
    • , M. Aliotta
    • , T. Davinson
    •  & D. A. Scott
  6. Department of Terrestrial Magnetism, Carnegie Institution for Science, Washington DC 20015, USA

    • L. R. Nittler
  7. Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany

    • D. Bemmerer
    •  & M. P. Takács
  8. Università di Napoli Federico II and INFN, Sezione di Napoli, Strada Comunale Cinthia, 80126 Napoli, Italy

    • A. Best
    • , A. Di Leva
    •  & G. Imbriani
  9. Gran Sasso Science Institute, INFN, Viale Francesco Crispi 7, 67100 L’Aquila, Italy

    • A. Boeltzig
    •  & G. F. Ciani
  10. INFN, Sezione di Padova, Via Francesco Marzolo 8, 35131 Padova, Italy

    • C. Broggini
    •  & R. Menegazzo
  11. Università degli Studi di Padova and INFN, Sezione di Padova, Via Francesco Marzolo 8, 35131 Padova, Italy

    • A. Caciolli
    • , R. Depalo
    •  & D. Piatti
  12. Università degli Studi di Genova and INFN, Sezione di Genova, Via Dodecaneso 33, 16146 Genova, Italy

    • F. Cavanna
    • , P. Corvisiero
    • , F. Ferraro
    •  & P. Prati
  13. Institute for Nuclear Research (MTA ATOMKI), PO Box 51, 4001 Debrecen, Hungary

    • Z. Elekes
    • , Zs. Fülöp
    • , Gy. Gyürky
    •  & T. Szücs
  14. INFN, Laboratori Nazionali del Gran Sasso (LNGS), 67100 Assergi, Italy

    • A. Formicola
    • , M. Junker
    •  & O. Straniero
  15. Università degli Studi di Torino and INFN, Sezione di Torino, Via Pietro Giuria 1, 10125 Torino, Italy

    • G. Gervino
  16. Università degli Studi di Milano and INFN, Sezione di Milano, Via Giovanni Celoria 16, 20133 Milano, Italy

    • A. Guglielmetti
    •  & D. Trezzi
  17. INFN, Sezione di Roma La Sapienza, Piazzale Aldo Moro 2, 00185 Roma, Italy

    • C. Gustavino
  18. Università degli Studi di Bari and INFN, Sezione di Bari, Via Edoardo Orabona 4, 70125 Bari, Italy

    • V. Mossa
    •  & F. R. Pantaleo
  19. INAF, Osservatorio Astronomico di Teramo, 64100 Teramo, Italy

    • O. Straniero
  20. South Dakota School of Mines, 501 East Saint Joseph Street, South Dakota 57701, USA

    • F. Strieder

Authors

  1. Search for M. Lugaro in:

  2. Search for A. I. Karakas in:

  3. Search for C. G. Bruno in:

  4. Search for M. Aliotta in:

  5. Search for L. R. Nittler in:

  6. Search for D. Bemmerer in:

  7. Search for A. Best in:

  8. Search for A. Boeltzig in:

  9. Search for C. Broggini in:

  10. Search for A. Caciolli in:

  11. Search for F. Cavanna in:

  12. Search for G. F. Ciani in:

  13. Search for P. Corvisiero in:

  14. Search for T. Davinson in:

  15. Search for R. Depalo in:

  16. Search for A. Di Leva in:

  17. Search for Z. Elekes in:

  18. Search for F. Ferraro in:

  19. Search for A. Formicola in:

  20. Search for Zs. Fülöp in:

  21. Search for G. Gervino in:

  22. Search for A. Guglielmetti in:

  23. Search for C. Gustavino in:

  24. Search for Gy. Gyürky in:

  25. Search for G. Imbriani in:

  26. Search for M. Junker in:

  27. Search for R. Menegazzo in:

  28. Search for V. Mossa in:

  29. Search for F. R. Pantaleo in:

  30. Search for D. Piatti in:

  31. Search for P. Prati in:

  32. Search for D. A. Scott in:

  33. Search for O. Straniero in:

  34. Search for F. Strieder in:

  35. Search for T. Szücs in:

  36. Search for M. P. Takács in:

  37. Search for D. Trezzi in:

Contributions

M.L. designed and carried out the research, ran the nucleosynthesis models, prepared the figures, and wrote the paper. A.I.K. ran the stellar structure models, discussed the results and wrote the paper. C.G.B. played a key role in the set up and running of the underground experiment relating to the 17O(p, α)14N reaction and analysed the data to derive the new rate. M.A. contributed to running the experiment and wrote the paper. L.R.N. contributed to the collection of the stardust grain data, discussed the results, prepared the figures, and wrote the paper. The other authors are co-investigators who set up and ran the underground experiment that lasted about three years, from 2012 to 2015, and made the measurements possible. O.S. also discussed the results.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to M. Lugaro.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    Supplementary Table 1