Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Thylakoid membrane stacking controls electron transport mode during the dark-to-light transition by adjusting the distances between PSI and PSII

Abstract

The balance between linear electron transport (LET) and cyclic electron transport (CET) plays an essential role in plant adaptation and protection against photo-induced damage. This balance is largely maintained by phosphorylation-driven alterations in the PSII–LHCII assembly and thylakoid membrane stacking. During the dark-to-light transition, plants shift this balance from CET, which prevails to prevent overreduction of the electron transport chain and consequent photo-induced damage, towards LET, which enables efficient CO2 assimilation and biomass production. Using freeze-fracture cryo-scanning electron microscopy and transmission electron microscopy of Arabidopsis leaves, we reveal unique membrane regions possessing characteristics of both stacked and unstacked regions of the thylakoid network that form during this transition. A notable consequence of the morphological attributes of these regions, which we refer to as ‘stacked thylakoid doublets’, is an overall increase in the proximity and connectivity of the two photosystems (PSI and PSII) that drive LET. This, in turn, reduces diffusion distances and barriers for the mobile carriers that transfer electrons between the two PSs, thereby maximizing LET and optimizing the plant’s ability to utilize light energy. The mechanics described here for the shift between CET and LET during the dark-to-light transition are probably also used during chromatic adaptation mediated by state transitions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Morphometric characterization of Arabidopsis WT, stn7stn8 and pph1pbcp plants.
Fig. 2: Density of PSII complexes in stacked and unstacked thylakoids of dark- and light-adapted plants.
Fig. 3: Segmentation and quantification of thylakoid domains.
Fig. 4: PSII fraction residing in proximity to PSI.
Fig. 5: Photosynthetic performance assessed by chlorophyll a fluorescence recordings.
Fig. 6: A model for the dark-to-light transition.

Similar content being viewed by others

Data availability

The data are available in the article, Extended Data Figs. 1–3 and Extended Data Tables 1 and 2. The images are deposited at figshare (https://doi.org/10.6084/m9.figshare.24942420). Source data are provided with this paper.

Code availability

The MATLAB code is available in Supplementary Code 1.

References

  1. Bussi, Y. et al. Fundamental helical geometry consolidates the plant photosynthetic membrane. Proc. Natl Acad. Sci. USA 116, 22366–22375 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Shimoni, E., Rav-hon, O., Ohad, I., Brumfeld, V. & Reich, Z. Three-dimensional organization of higher-plant chloroplast thylakoid membranes revealed by electron tomography. Plant Cell 17, 2580–2586 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Nevo, R., Charuvi, D., Tsabari, O. & Reich, Z. Composition, architecture and dynamics of the photosynthetic apparatus in higher plants. Plant J. 70, 157–176 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. Daum, B., Nicastro, D., Austin, J., Richard McIntosh, J. & Kühlbrandt, W. Arrangement of photosystem II and ATP synthase in chloroplast membranes of spinach and pea. Plant Cell 22, 1299–1312 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kirchhoff, H. et al. Structural and functional self-organization of photosystem II in grana thylakoids. Biochim. Biophys. Acta Bioenerg. 1767, 1180–1188 (2007).

    Article  CAS  Google Scholar 

  6. Rantala, M., Rantala, S. & Aro, E. M. Composition, phosphorylation and dynamic organization of photosynthetic protein complexes in plant thylakoid membrane. Photochem. Photobiol. Sci. 19, 604–619 (2020).

    Article  CAS  PubMed  Google Scholar 

  7. Tikkanen, M., Nurmi, M., Kangasjärvi, S. & Aro, E. M. Core protein phosphorylation facilitates the repair of photodamaged photosystem II at high light. Biochim. Biophys. Acta Bioenerg. 1777, 1432–1437 (2008).

    Article  CAS  Google Scholar 

  8. Puthiyaveetil, S. et al. Compartmentalization of the protein repair machinery in photosynthetic membranes. Proc. Natl Acad. Sci. USA 111, 15839–15844 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Koochak, H., Puthiyaveetil, S., Mullendore, D. L., Li, M. & Kirchhoff, H. The structural and functional domains of plant thylakoid membranes. Plant J. 97, 412–429 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. Anderson, J. M. The grana margins of plant thylakoid membranes. Physiol. Plant. 76, 243–248 (1989).

    Article  CAS  Google Scholar 

  11. Albertsson, P. Å. A quantitative model of the domain structure of the photosynthetic membrane. Trends Plant Sci. 6, 349–354 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Armond, P. A., Staehelin, L. A. & Arntzen, C. J. Spatial relationship of photosystem I, photosystem II, and the light-harvesting complex in chloroplast membranes. J. Cell Biol. 73, 400–418 (1977).

    Article  CAS  PubMed  Google Scholar 

  13. Dekker, J. P. & Boekema, E. J. Supramolecular organization of thylakoid membrane proteins in green plants. Biochim. Biophys. Acta Bioenerg. 1706, 12–39 (2005).

    Article  CAS  Google Scholar 

  14. Wietrzynski, W. et al. Charting the native architecture of Chlamydomonas thylakoid membranes with single-molecule precision. eLife 9, e53740 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Puthiyaveetil, S., Van Oort, B. & Kirchhoff, H. Surface charge dynamics in photosynthetic membranes and the structural consequences. Nat. Plants 3, 17020 (2017).

    Article  CAS  PubMed  Google Scholar 

  16. Barber, J. Influence of surface charges on thylakoid structure and function. Annu. Rev. Plant Physiol. 33, 261–295 (1982).

    Article  CAS  Google Scholar 

  17. Anderson, J. M., Horton, P., Kim, E. H. & Chow, W. S. Towards elucidation of dynamic structural changes of plant thylakoid architecture. Phil. Trans. R. Soc. B 367, 3515–3524 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chow, W. S., Kim, E.-H., Horton, P. & Anderson, J. M. Granal stacking of thylakoid membranes in higher plant chloroplasts: the physicochemical forces at work and the functional consequences that ensue. Photochem. Photobiol. Sci. 4, 1081–1090 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Kirchhoff, H. Architectural switches in plant thylakoid membranes. Photosynth. Res. 116, 481–487 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Fridlyand, L. E., Backhausen, J. E., Holtgrefe, S., Kitzmann, C. & Scheibe, R. Quantitative evaluation of the rate of 3-phosphoglycerate reduction in chloroplasts. Plant Cell Physiol. 38, 1177–1186 (1997).

    Article  CAS  Google Scholar 

  21. Robinson, S. P. & Walker, D. A. The control of 3-phosphoglycerate reduction in isolated chloroplasts by the concentrations of ATP, ADP and 3-phosphoglycerate. Biochim. Biophys. Acta Bioenerg. 545, 528–536 (1979).

    Article  CAS  Google Scholar 

  22. Horton, P. in Photosynthetic Mechanisms and the Environment (eds Barber, J. & Baker, N. R.) 135–187 (Elsevier, 1985).

  23. Hepworth, C. et al. Dynamic thylakoid stacking and state transitions work synergistically to avoid acceptor-side limitation of photosystem I. Nat. Plants 7, 87–98 (2021).

    Article  CAS  PubMed  Google Scholar 

  24. Li, Z., Wakao, S., Fischer, B. B. & Niyogi, K. K. Sensing and responding to excess light. Annu. Rev. Plant Biol. 60, 239–260 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Miyake, C. Molecular mechanism of oxidation of p700 and suppression of ROS production in photosystem I in response to electron-sink limitations in C3 plants. Antioxidants 9, 230 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Murata, N., Takahashi, S., Nishiyama, Y. & Allakhverdiev, S. I. Photoinhibition of photosystem II under environmental stress. Biochim. Biophys. Acta Bioenerg. 1767, 414–421 (2007).

    Article  CAS  Google Scholar 

  27. Fristedt, R., Granath, P. & Vener, A. V. A protein phosphorylation threshold for functional stacking of plant photosynthetic membranes. PLoS ONE 5, e10963 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Tikkanen, M. et al. Phosphorylation-dependent regulation of excitation energy distribution between the two photosystems in higher plants. Biochim. Biophys. Acta Bioenerg. 1777, 425–432 (2008).

    Article  CAS  Google Scholar 

  29. Wood, W. H. J. et al. Dynamic thylakoid stacking regulates the balance between linear and cyclic photosynthetic electron transfer. Nat. Plants 4, 116–127 (2018).

    Article  CAS  PubMed  Google Scholar 

  30. Chuartzman, S. G. et al. Thylakoid membrane remodeling during state transitions in Arabidopsis. Plant Cell 20, 1029–1039 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Johnson, G. N. Physiology of PSI cyclic electron transport in higher plants. Biochim. Biophys. Acta Bioenerg. 1807, 384–389 (2011).

    Article  CAS  Google Scholar 

  32. Joliot, P. & Joliot, A. Cyclic electron transfer in plant leaf. Proc. Natl Acad. Sci. USA 99, 10209–10214 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Slovacek, R. E., Crowther, D. & Hind, G. Relative activities of linear and cyclic electron flows during chloroplast CO2-fixation. Biochim. Biophys. Acta Bioenerg. 592, 495–505 (1980).

    Article  CAS  Google Scholar 

  34. Hertle, A. P. et al. PGRL1 is the elusive ferredoxin-plastoquinone reductase in photosynthetic cyclic electron flow. Mol. Cell 49, 511–523 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. Munekage, Y. et al. Cyclic electron flow around photosystem I is essential for photosynthesis. Nature 429, 579–582 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Suorsa, M. et al. PROTON GRADIENT REGULATION5 is essential for proper acclimation of Arabidopsis photosystem I to naturally and artificially fluctuating light conditions. Plant Cell 24, 2934–2948 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tikkanen, M., Grieco, M., Kangasjärvi, S. & Aro, E. M. Thylakoid protein phosphorylation in higher plant chloroplasts optimizes electron transfer under fluctuating light. Plant Physiol. 152, 723–735 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Telfer, A., Hodges, M., Millner, P. A. & Barber, J. The cation-dependence of the degree of protein phosphorylation-induced unstacking of pea thylakoids. Biochim. Biophys. Acta Bioenerg. 766, 554–562 (1984).

    Article  CAS  Google Scholar 

  39. Höhner, R. et al. Plastocyanin is the long-range electron carrier between photosystem II and photosystem I in plants. Proc. Natl Acad. Sci. USA 117, 15354–15362 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Pribil, M., Pesaresi, P., Hertle, A., Barbato, R. & Leister, D. Role of plastid protein phosphatase TAP38 in LHCII dephosphorylation and thylakoid electron flow. PLoS Biol. 8, e1000288 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kirchhoff, H. et al. Dynamic control of protein diffusion within the granal thylakoid lumen. Proc. Natl Acad. Sci. USA 108, 20248–20253 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Johnson, M. P. & Wientjes, E. The relevance of dynamic thylakoid organisation to photosynthetic regulation. Biochim. Biophys. Acta Bioenerg. 1861, 148039 (2020).

    Article  CAS  PubMed  Google Scholar 

  43. Staehelin, L. A. in Photosynthesis III (eds Staehelin, L. A. & Arntzen, C. J.) 1–84 (Springer Berlin, 1986); https://doi.org/10.1007/978-3-642-70936-4_1

  44. Pesaresi, P., Pribil, M., Wunder, T. & Leister, D. Dynamics of reversible protein phosphorylation in thylakoids of flowering plants: the roles of STN7, STN8 and TAP38. Biochim. Biophys. Acta Bioenerg. 1807, 887–896 (2011).

    Article  CAS  Google Scholar 

  45. Tikkanen, M. & Aro, E. M. Thylakoid protein phosphorylation in dynamic regulation of photosystem II in higher plants. Biochim. Biophys. Acta Bioenerg. 1817, 232–238 (2012).

    Article  CAS  Google Scholar 

  46. Longoni, P., Samol, I. & Goldschmidt-Clermont, M. The kinase STATE TRANSITION 8 phosphorylates light harvesting complex II and contributes to light acclimation in Arabidopsis thaliana. Front. Plant Sci. 10, 1156 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Bellaflore, S., Barneche, F., Peltler, G. & Rochalx, J. D. State transitions and light adaptation require chloroplast thylakoid protein kinase STN7. Nature 433, 892–895 (2005).

    Article  Google Scholar 

  48. Samol, I. et al. Identification of a photosystem II phosphatase involved in light acclimation in Arabidopsis. Plant Cell 24, 2596–2609 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rochaix, J.-D. et al. Protein kinases and phosphatases involved in the acclimation of the photosynthetic apparatus to a changing light environment. Phil. Trans. R. Soc. B 367, 3466–3474 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Shapiguzov, A. et al. The PPH1 phosphatase is specifically involved in LHCII dephosphorylation and state transitions in Arabidopsis. Proc. Natl Acad. Sci. USA 107, 4782–4787 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Charuvi, D., Nevo, R., Kaplan-Ashiri, I., Shimoni, E. & Reich, Z. Studying the supramolecular organization of photosynthetic membranes within freeze-fractured leaf tissues by cryo-scanning electron microscopy. J. Vis. Exp. https://doi.org/10.3791/54066 (2016).

  52. Branton, D. Fracture faces of frozen membranes: 50th anniversary. Mol. Biol. Cell 27, 421–423 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Staehelin, L. A. Reversible particle movements associated with unstacking and restacking of chloroplast membranes in vitro. J. Cell Biol. 71, 136–158 (1976).

    Article  CAS  PubMed  Google Scholar 

  54. Wollman, F. A., Olive, J., Bennoun, P. & Recouvreur, M. Organization of the photosystem II centers and their associated antennae in the thylakoid membranes: a comparative ultrastructural, biochemical, and biophysical study of Chlamydomonas wild type and mutants lacking in photosystem II reaction centers. J. Cell Biol. 87, 728–735 (1980).

    Article  CAS  PubMed  Google Scholar 

  55. Staehelin, L. A. & van der Staay, G. W. M. in Oxygenic Photosynthesis: The Light Reactions (eds Ort, D. R. et al.) 11–30 (Springer Netherlands, 1996); https://doi.org/10.1007/0-306-48127-8_2

  56. Armond, P. A. & Arntzen, C. J. Localization and characterization of photosystem II in grana and stroma lamellae. Plant Physiol. 59, 398–404 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hankamer, B., Barber, J. & Boekema, E. J. Structure and membrane organization of PSII in green plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48, 641–671 (1997).

    Article  CAS  PubMed  Google Scholar 

  58. Fristedt, R. et al. Phosphorylation of photosystem II controls functional macroscopic folding of photosynthetic membranes in Arabidopsis. Plant Cell 21, 3950–3964 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Armbruster, U. et al. Arabidopsis CURVATURE THYLAKOID1 proteins modify thylakoid architecture by inducing membrane curvature. Plant Cell 25, 2661–2678 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kirchhoff, H. Diffusion of molecules and macromolecules in thylakoid membranes. Biochim. Biophys. Acta Bioenerg. 1837, 495–502 (2014).

    Article  CAS  Google Scholar 

  61. Kirchhoff, H., Schöttler, M. A., Maurer, J. & Weis, E. Plastocyanin redox kinetics in spinach chloroplasts: evidence for disequilibrium in the high potential chain. Biochim. Biophys. Acta Bioenerg. 1659, 63–72 (2004).

    Article  CAS  Google Scholar 

  62. Wood, W. H. J. & Johnson, M. P. Modeling the role of LHCII–LHCII, PSII–LHCII, and PSI–LHCII interactions in state transitions. Biophys. J. 119, 287–299 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Trissl, H. W. & Wilhelm, C. Why do thylakoid membranes from higher plants form grana stacks? Trends Biochem. Sci. 18, 415–419 (1993).

    Article  CAS  PubMed  Google Scholar 

  64. Anderson, J. M. Insights into the consequences of grana stacking of thylakoid membranes in vascular plants: a personal perspective. Aust. J. Plant Physiol. 26, 625–639 (1999).

    CAS  Google Scholar 

  65. Pribil, M., Labs, M. & Leister, D. Structure and dynamics of thylakoids in land plants. J. Exp. Bot. 65, 1955–1972 (2014).

    Article  CAS  PubMed  Google Scholar 

  66. Wood, W. H. J., Barnett, S. F. H., Flannery, S., Hunter, C. N. & Johnson, M. P. Dynamic thylakoid stacking is regulated by LHCII phosphorylation but not its interaction with PSI. Plant Physiol. 180, 2152–2166 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  67. Tsabari, O. et al. Differential effects of ambient or diminished CO2 and O2 levels on thylakoid membrane structure in light-stressed plants. Plant J. 81, 884–894 (2015).

    Article  CAS  PubMed  Google Scholar 

  68. Barber, J. An explanation for the relationship between salt-induced thylakoid stacking and the chlorophyll fluorescence changes associated with changes in spillover of energy from photosystem II to photosystem I. FEBS Lett. 118, 1–10 (1980).

    Article  CAS  Google Scholar 

  69. Briantais, J. M., Vernotte, C., Olive, J. & Wollman, F. A. Kinetics of cation-induced changes of photosystem II fluorescence and of lateral distribution of the two photosystems in the thylakoid membranes of pea chloroplasts. Biochim. Biophys. Acta Bioenerg. 766, 1–8 (1984).

    Article  CAS  Google Scholar 

  70. Yokono, M., Takabayashi, A., Akimoto, S. & Tanaka, A. A megacomplex composed of both photosystem reaction centres in higher plants. Nat. Commun. 6, 6675 (2015).

    Article  CAS  PubMed  Google Scholar 

  71. Järvi, S., Suorsa, M., Paakkarinen, V. & Aro, E. M. Optimized native gel systems for separation of thylakoid protein complexes: novel super- and mega-complexes. Biochem. J. 439, 207–214 (2011).

    Article  PubMed  Google Scholar 

  72. Grieco, M., Suorsa, M., Jajoo, A., Tikkanen, M. & Aro, E. M. Light-harvesting II antenna trimers connect energetically the entire photosynthetic machinery—including both photosystems II and II. Biochim. Biophys. Acta Bioenerg. 1847, 607–619 (2015).

    Article  CAS  Google Scholar 

  73. Rantala, S. & Tikkanen, M. Phosphorylation-induced lateral rearrangements of thylakoid protein complexes upon light acclimation. Plant Direct 2, e00039 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Rantala, M. et al. Chloroplast acetyltransferase GNAT2 is involved in the organization and dynamics of thylakoid structure. Plant Cell Physiol. https://doi.org/10.1093/pcp/pcac096 (2022).

  75. Rozak, P. R., Seiser, R. M., Wacholtz, W. F. & Wise, R. R. Rapid, reversible alterations in spinach thylakoid appression upon changes in light intensity. Plant Cell Environ. 25, 421–429 (2002).

    Article  Google Scholar 

  76. Nevo, R. et al. in Lipids in Photosynthesis: Essential and Regulatory Functions (eds Wada, H. & Murata, N.) Dordrecht Springer-Verlag Vol. 30, 295–328 (2009).

  77. Li, M. et al. Measuring the dynamic response of the thylakoid architecture in plant leaves by electron microscopy. Plant Direct 4, e00280 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Allen, J. F. Protein phosphorylation in regulation of photosynthesis. Biochim. Biophys. Acta Bioenerg. 1098, 275–335 (1992).

    Article  CAS  Google Scholar 

  79. Anderson, J. M. Consequences of spatial separation of photosystem 1 and 2 in thylakoid membranes of higher plant chloroplasts. FEBS Lett. 124, 1–10 (1981).

    Article  CAS  Google Scholar 

  80. Anderson, J. M. The significance of grana stacking in chlorophyll B containing chloroplasts. Photobiochem. Photobiophys. 3, 225–241 (1982).

    CAS  Google Scholar 

  81. Suorsa, M. et al. Light acclimation involves dynamic re-organization of the pigment–protein megacomplexes in non-appressed thylakoid domains. Plant J. 84, 360–373 (2015).

    Article  CAS  PubMed  Google Scholar 

  82. Bag, P. et al. Direct energy transfer from photosystem II to photosystem I confers winter sustainability in Scots pine. Nat. Commun. 11, 6388 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kramer, D. M., Johnson, G., Kiirats, O. & Edwards, G. E. New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. Biol. Chem. 79, 209–218 (2004).

  84. Walther, P. & Müller, M. Double-layer coating for field-emission cryo-scanning electron microscopy—present state and applications. Scanning 19, 343–348 (1997).

    Article  CAS  PubMed  Google Scholar 

  85. Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Berg, S. et al. Ilastik: interactive machine learning for (bio)image analysis. Nat. Methods 16, 1226–1232 (2019).

    Article  CAS  PubMed  Google Scholar 

  87. R Core Team. R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing (2020).

  88. Wickham, H. et al. Welcome to the Tidyverse. J. Open Source Softw. 4, 1686 (2019).

    Article  Google Scholar 

  89. Wientjes, E., Van Amerongen, H. & Croce, R. Quantum yield of charge separation in photosystem II: functional effect of changes in the antenna size upon light acclimation. J. Phys. Chem. B 117, 11200–11208 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is dedicated to the memory of Eyal Shimoni, who passed away in July 2023. This work was supported by grants from the Israel Science Foundation (no. 1082/17 to Z.R. and R.N.; no. 1377/18 to D.C.) and the National Science Foundation United States–Israel Binational Science Foundation Molecular and Cellular Biosciences Program (no. 1616982 to H.K.; no. 2019695 to Z.R. and R.N.; no. 2015839 to Z.R.; no. 1953570 to H.K.).

Author information

Authors and Affiliations

Authors

Contributions

Z.R., H.K. and R.N. designed the research. Y.G., S.L.-Z. and E.S. performed the experiments. Y.G., Y.B., D.C. and R.N. analysed the data. Y.B., D.C., Z.R., H.K. and R.N. wrote the manuscript.

Corresponding authors

Correspondence to Reinat Nevo or Ziv Reich.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Plants thanks Anjali Pandit and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Representative cryo-SEM images of freeze-fractured leaf samples from dark- and light-adapted plants.

The exoplasmic fracture faces of unstacked membranes (EFu) are outlined. Scale bars: 100 nm. Images shown are representative images of the experiment described in Fig. 2.

Extended Data Fig. 2 Representative thin-section TEM images of chloroplasts (means ± SE) and a box plot of grana widths from dark- and light-adapted leaves of WT and of the stn7/stn8 and pph1/pbcp mutants.

N = number of grana probed per genotype and condition: WT - 291 (D), 232 (L); stn7/stn8 - 160 (D), 126 (L); pph1/pbcp - 140 (D), 140 (L). For each genotype and condition, samples were obtained from two different plants. In the box plots, the box indicates the interquartile area, whiskers are drawn down to the 5th percentile and up to the 95th, with small black squares in the middle representing the means. Scale bars: 500 nm.

Extended Data Fig. 3 Simulation of PSII to PSI nearest neighbor distance using empirical (PSII) and calculated (PSI) densities in unstacked membranes in WT.

For the obtained PSI:PSII ratios, of 5.1 for dark (D) and 3.1 for light (L) (gray lines), the analysis showed that the PSII-PSI nearest neighbor distances were ˂2 nm. For the simulation, PSI and PSII complexes were represented by disks with areas approximated from their PDB structures (PSI [2WSC]; PSII [7OUI]). PSII particles were randomly placed in a 1 µm2 grid with the densities observed in dark (D) and light (L) conditions (522 particles/µm2 and 773 particles/µm2, respectively, see Fig. 2). PSI particles were randomly placed in unoccupied positions (not allowing for particle overlap) until either no more particles could be added randomly or the PSI density reached our estimated values (2685 particles/µm2 [D] or 2410 particles/µm2 [L])*. Using the PSII and PSI densities resulted in PSI:PSII ratios of 5.1 for D (dark grey) and 3.1 for L (light grey). The simulation was carried out 100 times for different PSI:PSII ratios, three examples for ratios of 1:1; 2:1; 3:1 in the dark condition are shown with PSII colored in green and PSI in magenta. The plot depicts the PSII-PSI nearest neighbor distance (from particle edge to edge) for D (blue) and L (red), with points representing the mean of the means and error bars showing the mean of the standard deviations for the distances in the 100 replicates (N = 100; Data are presented as means of means ± means of SDs). For both D and L, at the calculated PSI:PSII ratios (5.1 [D] and 3.1 [L]) when the maximum PSI particles were placed in the grid randomly, the extrapolated PSII-PSI nearest neighbor distances were ˂2 nm. The simulation (Garty_at_al_Supplementary_information_2.m) was carried out using MATLAB version: 9.13.0 (R2022b), Natick, Massachusetts: The MathWorks Inc.; 2022. *Values of PSI densities were estimated using a PSII:PSI ratio of 1.3 for the whole thylakoid fraction89. We then calculated the ratios of stacked/unstacked membranes, from the observed thylakoid fractions (Fig. 3f), as \(\frac{\frac{1}{2}{f}_{GSL}+{f}_{G}}{\frac{1}{2}{f}_{GSL}+{f}_{SL}}\). The values obtained, 1.94 in dark and 1.56 in light, were used to calculate the PSI density, which was similar to published AFM data29.

Extended Data Table 1 Maximum quantum yield of PSII (Fv/Fm)*
Extended Data Table 2 Thylakoid length* in dark- and light-adapted plants

Supplementary information

Reporting Summary

Supplementary Code 1

Code for Extended Data Fig. 3.

Source data

Source Data Fig. 1

Statistical source data for Figs. 1–5.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garty, Y., Bussi, Y., Levin-Zaidman, S. et al. Thylakoid membrane stacking controls electron transport mode during the dark-to-light transition by adjusting the distances between PSI and PSII. Nat. Plants 10, 512–524 (2024). https://doi.org/10.1038/s41477-024-01628-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-024-01628-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing