Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Stage-specific genotype-by-environment interactions determine yield components in wheat

Abstract

In cereal crops, environmental fluctuations affect different physiological processes during various developmental phases associated with the formation of yield components. Because these effects are coupled with cultivar-specific phenology, studies investigating environmental responses in different cultivars can give contradictory results regarding key phases impacting yield performance. To dissect how genotype-by-environment interactions affect grain yield in winter wheat, we estimated the sensitivities of yield components to variation in global radiation, temperature and precipitation in 220 cultivars across 81 time-windows ranging from double ridge to seed desiccation. Environmental sensitivity responses were prominent in the short-term physiological subphases of spike and kernel development, causing phenologically dependent, stage-specific genotype-by-environment interactions. Here we reconcile contradicting findings from previous studies and show previously undetected effects; for example, the positive impact of global radiation on kernel weight during canopy senescence. This deep insight into the three-way interactions between phenology, yield formation and environmental fluctuations provides comprehensive new information for breeding and modelling cereal crops.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Effects of GR in 81 time-windows before and after heading (thermal time = 0 °Cd) on KpS.
Fig. 2: Identification of time-windows of yield components (KpS, Sno and TKW) sensitive to variations in environmental variables (GR, Tmax, Tmean, Tmin and PR).
Fig. 3: Time-windows of KpS that showed significant synergistic effects of two environmental variables on its formation.

Similar content being viewed by others

Data availability

The complete set of climate data and simulated soil data, yield components of all environments, and sensitivity and significance of yield components to all environmental variables of all genotypes and all time-windows are available in the Zenodo data repository54.

Code availability

No custom algorithm was used in this study. All code used to analyse the data is available from the authors. Please contact the first author or corresponding author (sabir@gem.uni-hannover.de or tsu-wei.chen@hu-berlin.de) in case of interest.

References

  1. Wang, E. et al. The uncertainty of crop yield projections is reduced by improved temperature response functions. Nat. Plants 3, 17102 (2017).

    Article  PubMed  Google Scholar 

  2. Reynolds, M. et al. Raising yield potential in wheat. J. Exp. Bot. 60, 1899–1918 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Reynolds, M. et al. Achieving yield gains in wheat. Plant Cell Environ. 35, 1799–1823 (2012).

    Article  PubMed  Google Scholar 

  4. Raza, A. et al. Impact of climate change on crops adaptation and strategies to tackle its outcome: a review. Plants 8, 34 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Liu, B. et al. Global wheat production with 1.5 and 2.0 °C above pre-industrial warming. Glob. Chang. Biol. 25, 1428–1444 (2018).

    Article  Google Scholar 

  6. Bönecke, E. et al. Decoupling of impact factors reveals the response of German winter wheat yields to climatic changes. Glob. Chang. Biol. 26, 3601–3626 (2020).

    Article  PubMed  Google Scholar 

  7. Mäkinen, H. et al. Sensitivity of European wheat to extreme weather. Field Crops Res. 222, 209–217 (2018).

    Article  Google Scholar 

  8. Porter, J. R. & Semenov, M. A. Crop responses to climatic variation. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360, 2021–2035 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Zhang, X. et al. Contribution of cultivar, fertilizer and weather to yield variation of winter wheat over three decades: a case study in the North China Plain. Eur. J. Agron. 50, 52–59 (2013).

    Article  Google Scholar 

  10. Xu, J., Henry, A. & Sreenivasulu, N. Rice yield formation under high day and night temperatures – a prerequisite to ensure future food security. Plant Cell Environ. 43, 1595–1608 (2020).

    Article  CAS  PubMed  Google Scholar 

  11. Abbate, P. E., Andrade, F. H., Culot, J. P. & Bindraban, P. S. Grain yield in wheat: effects of radiation during spike growth period. Field Crops Res. 54, 245–257 (1997).

    Article  Google Scholar 

  12. Fischer, R. A. Number of kernels in wheat crops and the influence of solar radiation and temperature. J. Agric. Sci. 105, 447–461 (1985).

    Article  Google Scholar 

  13. Cossani, C. M. & Reynolds, M. P. Physiological traits for improving heat tolerance in wheat. Plant Physiol. 160, 1710–1718 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang, X. et al. Pre-anthesis high temperature acclimation alleviates the negative effects of post-anthesis heat stress on stem stored carbohydrates remobilization and grain starch accumulation in wheat. J. Cereal Sci. 55, 331–336 (2012).

    Article  CAS  Google Scholar 

  15. Villegas, D. et al. Daylength, temperature and solar radiation effects on the phenology and yield formation of spring durum wheat. J. Agron. Crop Sci. 202, 203–216 (2016).

    Article  Google Scholar 

  16. Guo, Z., Chen, D. & Schnurbusch, T. Plant and floret growth at distinct developmental stages during the stem elongation phase in wheat. Front. Plant Sci. 9, 330 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lichthardt, C., Chen, T.-W., Stahl, A. & Stützel, H. Co-evolution of sink and source in the recent breeding history of winter wheat in Germany. Front. Plant Sci. 10, 1771 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Voss-Fels, K. P. et al. Breeding improves wheat productivity under contrasting agrochemical input levels. Nat. Plants 5, 706–714 (2019).

    Article  PubMed  Google Scholar 

  19. Wu, X., Tang, Y., Li, C. & Wu, C. Characterization of the rate and duration of grain filling in wheat in Southwestern China. Plant Prod. Sci. 21, 358–369 (2018).

    Article  Google Scholar 

  20. Ferreira, M. S. et al. Physicochemical control of durum wheat grain filling and glutenin polymer assembly under different temperature regimes. J. Cereal Sci. 56, 58–66 (2012).

    Article  CAS  Google Scholar 

  21. Guo, Z., Chen, D. & Schnurbusch, T. Variance components, heritability and correlation analysis of anther and ovary size during the floral development of bread wheat. J. Exp. Bot. 66, 3099–3111 (2015).

    Article  CAS  PubMed  Google Scholar 

  22. Guo, Z., Chen, D., Röder, M. S., Ganal, M. W. & Schnurbusch, T. Genetic dissection of pre-anthesis sub-phase durations during the reproductive spike development of wheat. Plant J. 95, 909–918 (2018).

    Article  CAS  Google Scholar 

  23. Tardieu, F., Simonneau, T. & Muller, B. The physiological basis of drought tolerance in crop plants: a scenario-dependent probabilistic approach. Annu. Rev. Plant Biol. 69, 733–759 (2018).

    Article  CAS  PubMed  Google Scholar 

  24. Ji, H. et al. Effects of jointing and booting low temperature stresses on grain yield and yield components in wheat. Agric. For. Meteorol. 243, 33–42 (2017).

    Article  Google Scholar 

  25. Fernández-Gómez, J., Talle, B., Tidy, A. C. & Wilson, Z. A. Accurate staging of reproduction development in Cadenza wheat by non-destructive spike analysis. J. Exp. Bot. 71, 3475–3484 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Fernández-Gómez, J., Talle, B. & Wilson, Z. A. Increased expression of the MALE STERILITY 1 transcription factor gene results in temperature-sensitive male sterility in barley. J. Exp. Bot. 71, 6328–6339 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Allen, D. J. & Ort, D. R. Impacts of chilling temperatures on photosynthesis in warm-climate plants. Trends Plant Sci. 6, 36–42 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Valluru, R., Link, J. & Claupein, W. Consequences of early chilling stress in two Triticum species: plastic responses and adaptive significance. Plant Biol. (Stuttg.) 14, 641–651 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. González, F. G., Miralles, D. J. & Slafer, G. A. Wheat floret survival as related to pre-anthesis spike growth. J. Exp. Bot. 62, 4889–4901 (2011).

    Article  PubMed  Google Scholar 

  30. Reynolds, M. P., Acevedo, E., Sayre, K. D. & Fischer, R. A. Yield potential in modern wheat varieties: its association with a less competitive ideotype. Field Crops Res. 37, 149–160 (1994).

    Article  Google Scholar 

  31. Narayanan, S., Prasad, P. V. V., Fritz, A. K., Boyle, D. L. & Gill, B. S. Impact of high night-time and high daytime temperature stress on winter wheat. J. Agron. Crop Sci. 201, 206–218 (2015).

    Article  CAS  Google Scholar 

  32. Marcela, H. et al. Effect of heat stress at anthesis on yield formation in winter wheat. Plant Soil Environ. 63, 139–144 (2017).

    Article  Google Scholar 

  33. Djanaguiraman, M., Narayanan, S., Erdayani, E. & Prasad, P. V. V. Effects of high temperature stress during anthesis and grain filling periods on photosynthesis, lipids and grain yield in wheat. BMC Plant Biol. 20, 268–280 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wheeler, T. R. et al. The duration and rate of grain growth, and harvest index, of wheat (Triticum aestivum L.) in response to temperature and CO2. J. Exp. Bot. 47, 623–630 (1996).

    Article  CAS  Google Scholar 

  35. Distelfeld, A., Avni, R. & Fischer, A. M. Senescence, nutrient remobilization, and yield in wheat and barley. J. Exp. Bot. 65, 3783–3798 (2014).

    Article  PubMed  Google Scholar 

  36. Fahy, B. et al. Final grain weight is not limited by the activity of key starch-synthesising enzymes during grain filling in wheat. J. Exp. Bot. 69, 5461–5475 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Ugarte, C., Calderini, D. F. & Slafer, G. A. Grain weight and grain number responsiveness to pre-anthesis temperature in wheat, barley and triticale. Field Crops Res. 100, 240–248 (2007).

    Article  Google Scholar 

  38. Sinclair, T. R. & Jamieson, P. D. Grain number, wheat yield, and bottling beer: an analysis. Field Crops Res. 98, 60–67 (2006).

    Article  Google Scholar 

  39. Ma, Y.-Z., MacKown, C. T. & van Sanford, D. A. Sink manipulation in wheat: compensatory changes in kernel size. Crop Sci. 30, 1099–1105 (1990).

    Article  Google Scholar 

  40. Neukam, D., Ahrends, H., Luig, A., Manderscheid, R. & Kage, H. Integrating wheat canopy temperatures in crop system models. Agronomy 6, 7 (2016).

    Article  Google Scholar 

  41. Kage, H. & Stützel, H. In Modelling Cropping Systems (eds Donatelli, M. et al.) 299–300 (European Society of Agronomy, 1999).

  42. Marti, J., Savin, R. & Slafer, G. A. Wheat yield as affected by length of exposure to waterlogging during stem elongation. J. Agron. Crop Sci. 201, 473–486 (2015).

    Article  CAS  Google Scholar 

  43. Xie, Q., Mayes, S. & Sparkes, D. L. Carpel size, grain filling, and morphology determine individual grain weight in wheat. J. Exp. Bot. 66, 6715–6730 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tomás, D., Rodrigues, J. C., Viegas, W. & Silva, M. Assessment of high temperature effects on grain yield and composition in bread wheat commercial varieties. Agronomy 10, 499 (2020).

    Article  Google Scholar 

  45. Fischer, R. A. & Maurer, O. R. Crop temperature modification and yield potential in a dwarf spring wheat. Crop Sci. 16, 855–859 (1976).

    Article  Google Scholar 

  46. Hatfield, J. L. & Walthall, C. L. Meeting global food needs: realizing the potential via genetics × environment × management interactions. J. Agron. 107, 1215–1226 (2015).

    Article  Google Scholar 

  47. Russell, K., Lee, C. & van Sanford, D. Interaction of genetics, environment, and management in determining soft red winter wheat yields. J. Agron. 109, 2463–2473 (2017).

    Article  CAS  Google Scholar 

  48. Millet, E. J. et al. Genomic prediction of maize yield across European environmental conditions. Nat. Genet. 51, 952–956 (2019).

    Article  CAS  PubMed  Google Scholar 

  49. Parent, B., Millet, E. J. & Tardieu, F. The use of thermal time in plant studies has a sound theoretical basis provided that confounding effects are avoided. J. Exp. Bot. 70, 2359–2370 (2019).

    Article  CAS  PubMed  Google Scholar 

  50. Arnold, P. A., Kruuk, L. E. B. & Nicotra, A. B. How to analyse plant phenotypic plasticity in response to a changing climate. New Phytol. 222, 1235–1241 (2019).

    Article  PubMed  Google Scholar 

  51. Kahlen, K. & Stützel, H. Modelling photo-modulated internode elongation in growing glasshouse cucumber canopies. New Phytol. 190, 697–708 (2011).

    Article  PubMed  Google Scholar 

  52. Kahlen, K. & Chen, T.-W. Predicting plant performance under simultaneously changing environmental conditions – the interplay between temperature, light, and internode growth. Front. Plant Sci. 6, 1130 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  53. R Core Team. R: A language and environment for statistical computing (R Foundation for Statistical Computing, 2014).

  54. Sabir, K. et al. Stage-specific genotype-by-environment interactions determine yield components in wheat [Data set]. Zenodo https://doi.org/10.5281/zenodo.8248543 (2023).

Download references

Acknowledgements

Funding for this study was provided by the German Federal Ministry of Education and Research grant no. 031A354. T.-W.C. was funded by Deutsche Forschungsgemeinschaft (German Research Foundation) under project no. 442020478.

Author information

Authors and Affiliations

Authors

Contributions

T.-W.C. conceived the analyses. K.S. and T.-W.C. analysed the data. T.R. simulated the soil water content. B.W., A.S. and R.J.S. designed the experiments. T.-W.C., T.R., H.Z., A.B., F.O., J.L., H.K., H.S. and W.F. performed and supervised the experiments and provided data. K.S., H.S. and T.-W.C. wrote the paper.

Corresponding author

Correspondence to Tsu-Wei Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Plants thanks Enli Wang, Juan Burgueño and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–11, Tables 1–6 and Method.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabir, K., Rose, T., Wittkop, B. et al. Stage-specific genotype-by-environment interactions determine yield components in wheat. Nat. Plants 9, 1688–1696 (2023). https://doi.org/10.1038/s41477-023-01516-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-023-01516-8

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene