Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Regulation of plants developed through new breeding techniques must ensure societal benefits

Genome editing provides a unique opportunity to create produce benefiting consumers, but success depends on risk-proportional regulation. Existing seedless fruit varieties such as watermelon, mandarin oranges and grape are strongly preferred by consumers and support healthy diets without pre-market regulatory approvals required for commercialization. Replicating the seedless trait in other fruits is a promising way to increase consumption. Here we compare the differential treatment by various regulatory systems of identical products made by inserting an ancient seedless allele into muscadine grape (Vitis rotundifolia) using traditional breeding or templated or non-templated genome editing tools.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Multiple paths to the sdi allele.
Fig. 2: Varying utility of current regulatory approaches.

References

  1. Lassoued, R., Phillips, P. W. B., Macall, D. M., Hesseln, H. & Smyth, S. J. Plant Biotechnol. J. 19, 1104–1109 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Office of Disease Prevention and Health Promotion. Healthy People 2030. US Department of Health and Human Services https://health.gov/healthypeople

  3. Hodder, R. K., O’Brien, K. M., Tzelepis, F., Wyse, R. J. & Wolfenden, L. Cochrane Database Syst. Rev. https://doi.org/10.1002/14651858.CD008552.pub7 (2020).

  4. Mikkilä, V., Räsänen, L., Raitakari, O. T., Pietinen, P. & Viikari, J. Eur. J. Clin. Nutr. 58, 1038–1045 (2004).

    Article  PubMed  Google Scholar 

  5. Rasmussen, M. et al. Int. J. Behav. Nutr. Phys. Act. 3, 22 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Krølner, R. et al. Int. J. Behav. Nutr. Phys. Act. 8, 112 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Wallace, T. C. et al. Crit. Rev. Food Sci. Nutr. 60, 2174–2211 (2020).

    Article  CAS  PubMed  Google Scholar 

  8. Daniels, G. W. & Hutt, W. H. Economica 4, 93 (1937).

    Article  Google Scholar 

  9. Smith, E. What’s an orange? Mandarin domination of citrus market grows. The Business Journal https://thebusinessjournal.com/whats-an-orange-mandarin-domination-of-citrus-market-grows/ (2022).

  10. Partridge, L. Royal Society responds to Defra regulation of gene editing consultation response. The Royal Society https://royalsociety.org/news/2021/09/DEFRA-genome-editing-response/ (2021).

  11. Lahogue, F., This, P. & Bouquet, A. Theor. Appl. Genet. 97, 950–959 (1998).

    Article  CAS  Google Scholar 

  12. Stout, A. Seedlessness in Grapes. Technical Bulletin No. 238 (New York State Agricultural Experiment Station, 1936).

  13. California Grape Acreage Report, 2021 Summary. https://www.nass.usda.gov/Statistics_by_State/California/Publications/Specialty_and_Other_Releases/Grapes/Acreage/2022/grpacSUMMARY2021Crop.pdf (California Department of Food and Agriculture, 2022).

  14. Royo, C. et al. Plant Physiol. 177, 1234–1253 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Conner, P. J. & Worthington, M. Plant Breed. Rev. 46, 31–117 (2022).

    Article  Google Scholar 

  16. Pastrana-Bonilla, E., Akoh, C. C., Sellappan, S. & Krewer, G. J. Agric. Food Chem. 51, 5497–5503 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Sandhu, A. K. & Gu, L. J. Agric. Food Chem. 58, 4681–4692 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Burton, L. J. et al. PLoS One 14, e0214844 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hudson, T. S. et al. Cancer Res. 67, 8396–8405 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Brown, J. C. & Jiang, X. J. Appl. Microbiol. 114, 982–991 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. Brown, J. C., Wang, J., Kasman, L., Jiang, X. & Haley-Zitlin, V. J. Appl. Microbiol. 110, 139–146 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. Burton, L. J. et al. PLoS One 11, e0164115 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Paller, C. J. et al. Prostate 75, 1518–1525 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Brown, K. et al. J. Food Sci. 81, S2808–S2816 (2016).

    Article  CAS  PubMed  Google Scholar 

  25. Gray, D. Disease-resistant Seedless Muscadine Grape Cultivars Utilizing Eco- and Consumer-Friendly Cisgenic Modification Technologies. Project No. FLA-APO-005098 (United States Department of Agriculture, 2016).

  26. Bloodworth, J. SSC induction in Vitis muscadinia. US patent 9,706,726 (2017).

  27. Frisch, M., Bohn, M. & Melchinger, A. E. Crop Sci. 39, 1295–1301 (1999).

    Article  Google Scholar 

  28. Delame, M. et al. Theor. Appl. Genet. 132, 1073–1087 (2019).

    Article  PubMed  Google Scholar 

  29. Chetelat, R. T. & Deverna, J. W. Theor. Appl. Genet. 82, 704–712 (1991).

    Article  CAS  PubMed  Google Scholar 

  30. Jasin, M. & Rothstein, R. Cold Spring Harb. Perspect. Biol. 5, a012740 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Anzalone, A. V. et al. Nature 576, 149–157 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Nature 533, 420–424 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Animal and Plant Health Inspection Service, USDA. Movement of Certain Genetically Engineered Organisms https://www.federalregister.gov/documents/2020/05/18/2020-10638/movement-of-certain-genetically-engineered-organisms (National Archives, 2020).

  34. Jenkins, D., Dobert, R., Atanassova, A. & Pavely, C. In Vitro Cell Dev. Biol. Plant 57, 609–626 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Matsuo, M. & Tachikawa, M. Front. Genome Ed. 4, 899154 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Martínez-Fortún, J., Phillips, D. W. & Jones, H. D. Front. Genome Ed. 4, 937853 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Animal and Plant Health Inspection Service, USDA. Movement of Organisms Modified or Produced Through Genetic Engineering https://www.ecfr.gov/current/title-7/subtitle-B/chapter-III/part-340 (National Archives, 2023).

  38. Kaiser, N. et al. Trends Food Sci. Technol. 100, 51–66 (2020).

    Article  CAS  Google Scholar 

  39. Food Safety. EC study on new genomic techniques. European Commission https://food.ec.europa.eu/plants/genetically-modified-organisms/new-techniques-biotechnology/ec-study-new-genomic-techniques_en (2021).

  40. Court of Justice of the European Union. Press Release No 22/23 https://curia.europa.eu/jcms/upload/docs/application/pdf/2023-02/cp230022en.pdf (Communications Directorate, 2023).

  41. Genetic Technology (Precision Breeding) Act 2023 https://bills.parliament.uk/bills/3167 (UK Parliament, 2023).

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daniel Jenkins, Nicole Juba, Brian Crawford, Margaret Worthington or Aaron Hummel.

Ethics declarations

Competing interests

D.J., N.J., B.C. and A.H. are employees of Pairwise Plants Services, Inc. which is involved in the development of genome-editing tools and edited plants.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jenkins, D., Juba, N., Crawford, B. et al. Regulation of plants developed through new breeding techniques must ensure societal benefits. Nat. Plants 9, 679–684 (2023). https://doi.org/10.1038/s41477-023-01403-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-023-01403-2

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene