Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Evolutionarily conserved hierarchical gene regulatory networks for plant salt stress response

Abstract

Plant cells constantly alter their gene expression profiles to respond to environmental fluctuations. These continuous adjustments are regulated by multi-hierarchical networks of transcription factors. To understand how such gene regulatory networks (GRNs) have stabilized evolutionarily while allowing for species-specific responses, we compare the GRNs underlying salt response in the early-diverging and late-diverging plants Marchantia polymorpha and Arabidopsis thaliana. Salt-responsive GRNs, constructed on the basis of the temporal transcriptional patterns in the two species, share common trans-regulators but exhibit an evolutionary divergence in cis-regulatory sequences and in the overall network sizes. In both species, WRKY-family transcription factors and their feedback loops serve as central nodes in salt-responsive GRNs. The divergent cis-regulatory sequences of WRKY-target genes are probably associated with the expansion in network size, linking salt stress to tissue-specific developmental and physiological responses. The WRKY modules and highly linked WRKY feedback loops have been preserved widely in other plants, including rice, while keeping their binding-motif sequences mutable. Together, the conserved trans-regulators and the quickly evolving cis-regulatory sequences allow salt-responsive GRNs to adapt over a long evolutionary timescale while maintaining some consistent regulatory structure. This strategy may benefit plants as they adapt to changing environments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Temporal dynamics of M. polymorpha and A. thaliana transcriptome during salt treatment.
Fig. 2: Gene regulatory networks of salt-responsive transcriptional modulators.
Fig. 3: Salt-response phenotypes of WRKY knockout mutants in M. polymorpha and A. thaliana.
Fig. 4: Distinct pCREs for salt-response genes in Arabidopsis and M. polymorpha.
Fig. 5: Hierarchical regulation of WRKYs in M. polymorpha.
Fig. 6: WRKY-regulatory modes in different plant species.

Similar content being viewed by others

Data availability

All experimental data, transcriptome data, R codes and genetic materials presented in this study are available on request. All transcriptome datasets collected in this study are openly available in the NCBI GEO repository (GSE153103, https://www.ncbi.nlm.nih.gov/geo/).

References

  1. Yosef, N. & Regev, A. Impulse control: temporal dynamics in gene transcription. Cell 144, 886–896 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Marshall-Colón, A. & Kliebenstein, D. J. Plant networks as traits and hypotheses: moving beyond description. Trends Plant Sci. 24, 840–852 (2019).

    Article  PubMed  CAS  Google Scholar 

  3. Stergachis, A. B. et al. Conservation of trans-acting circuitry during mammalian regulatory evolution. Nature 515, 365–370 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hickman, R. et al. Architecture and dynamics of the jasmonic acid gene regulatory network. Plant Cell 29, 2086–2105 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ichihashi, Y. et al. Evolutionary developmental transcriptomics reveals a gene network module regulating interspecific diversity in plant leaf shape. Proc. Natl Acad. Sci. USA 111, E2616–E2621 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gutiérrez, R. A. et al. Systems approach identifies an organic nitrogen-responsive gene network that is regulated by the master clock control gene CCA1. Proc. Natl Acad. Sci. USA 105, 4939–4944 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Varala, K. et al. Temporal transcriptional logic of dynamic regulatory networks underlying nitrogen signaling and use in plants. Proc. Natl Acad. Sci. USA 115, 6494–6499 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wittkopp, P. J. & Kalay, G. Cis-regulatory elements: molecular mechanisms and evolutionary processes underlying divergence. Nat. Rev. Genet. 13, 59–69 (2012).

    Article  CAS  Google Scholar 

  9. Liu, M. J. et al. Regulatory divergence in wound-responsive gene expression between domesticated and wild tomato. Plant Cell 30, 1445–1460 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Voordeckers, K., Pougach, K. & Verstrepen, K. J. How do regulatory networks evolve and expand throughout evolution? Curr. Opin. Biotechnol. 34, 180–188 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Bowman, J. L. et al. Insights into land plant evolution garnered from the Marchantia polymorpha genome. Cell 171, 287–304 (2017).

    Article  CAS  PubMed  Google Scholar 

  12. Isayenkov, S. V. & Maathuis, F. J. M. Plant salinity stress: many unanswered questions remain. Front. Plant Sci. https://doi.org/10.3389/fpls.2019.00080 (2019).

  13. Choi, W. G., Toyota, M., Kim, S. H., Hilleary, R. & Gilroy, S. Salt stress-induced Ca2+ waves are associated with rapid, long-distance root-to-shoot signaling in plants. Proc. Natl Acad. Sci. USA 111, 6497–6502 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Munns, R. & Tester, M. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 59, 651–681 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Geng, Y. et al. A spatio-temporal understanding of growth regulation during the salt stress response in Arabidopsis. Plant Cell https://doi.org/10.1105/tpc.113.112896 (2013).

  16. Dinneny, J. R. et al. Cell identity mediates the response of Arabidopsis roots to abiotic stress. Science 320, 942–945 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Shiu, S.-H., Uygun, S. & Azodi, C. B. Cis-regulatory code for predicting plant cell-type transcriptional response to high salinity. Plant Physiol. https://doi.org/10.1104/pp.19.00653 (2019).

  18. Julkowska, M. M. & Testerink, C. Tuning plant signaling and growth to survive salt. Trends Plant Sci. 20, 586–594 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Song, L. et al. A transcription factor hierarchy defines an environmental stress response network. Science 354, aag1550 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Golldack, D., Lüking, I. & Yang, O. Plant tolerance to drought and salinity: stress regulating transcription factors and their functional significance in the cellular transcriptional network. Plant Cell Rep. 30, 1383–1391 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Jiang, Y. & Deyholos, M. K. Functional characterization of Arabidopsis NaCl-inducible WRKY25 and WRKY33 transcription factors in abiotic stresses. Plant Mol. Biol. 69, 91–105 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Liu, S., Kracher, B., Ziegler, J., Birkenbihl, R. P. & Somssich, I. E. Negative regulation of ABA signaling by WRKY33 is critical for Arabidopsis immunity towards Botrytis cinerea 2100. eLife 4, e07295 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Zheng, Z., Mosher, S. L., Fan, B., Klessig, D. F. & Chen, Z. Functional analysis of Arabidopsis WRKY25 transcription factor in plant defense against Pseudomonas syringae. BMC Plant Biol. 7, 2 (2007).

  24. Xu, X., Chen, C., Fan, B. & Chen, Z. Physical and functional interactions between pathogen-induced Arabidopsis WRKY18, WRKY40, and WRKY60 transcription factors. Plant Cell 18, 1310–1326 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li, H. & Johnson, A. D. Evolution of transcription networks—lessons from yeasts. Curr. Biol. 20, R746–R753 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Phukan, U. J., Jeena, G. S. & Shukla, R. K. WRKY transcription factors: molecular regulation and stress responses in plants. Front. Plant Sci. 7, 760 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Teichmann, S. A. & Babu, M. M. Gene regulatory network growth by duplication. Nat. Genet. 36, 492–496 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Khraiwesh, B. et al. Genome-wide expression analysis offers new insights into the origin and evolution of Physcomitrella patens stress response. Sci. Rep. 5, 17434 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Keshishian, E. A. et al. Salt and oxidative stresses uniquely regulate tomato cytokinin levels and transcriptomic response. Plant Direct 2, e00071 (2018).

  30. Gerstein, M. B. et al. Architecture of the human regulatory network derived from ENCODE data. Nature 489, 91–100 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Erwin, D. H. & Davidson, E. H. The evolution of hierarchical gene regulatory networks. Nat. Rev. Genet. 10, 141–148 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Khoueiry, P. et al. Uncoupling evolutionary changes in DNA sequence, transcription factor occupancy and enhancer activity. eLife 6, e28440 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Paris, M. et al. Extensive divergence of transcription factor binding in Drosophila embryos with highly conserved gene expression. PLoS Genet. 9, e1003748 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Borneman, A. R. et al. Divergence of transcription factor binding sites across related yeast species. Science 317, 815–819 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Inukai, S., Kock, K. H. & Bulyk, M. L. Transcription factor–DNA binding: beyond binding site motifs. Curr. Opin. Genet. Dev. 43, 110–119 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yamasaki, K. et al. Structural basis for sequence-specific DNA recognition by an Arabidopsis WRKY transcription factor. J. Biol. Chem. 287, 7683–7691 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cheng, X. et al. Structural basis of dimerization and dual W-box DNA recognition by rice WRKY domain. Nucleic Acids Res. 47, 4308–4318 (2019).

  38. Hendler, A. et al. Gene duplication and co-evolution of G1/S transcription factor specificity in fungi are essential for optimizing cell fitness. PLoS Genet. 13, e1006778 (2017).

  39. Hoang, X. L. T., Nhi, D. N. H., Thu, N. B. A., Thao, N. P. & Tran, L.-S. P. Transcription factors and their roles in signal transduction in plants under abiotic stresses. Curr. Genomics 18, 483–497 (2017).

  40. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

  42. Ernst, J., Nau, G. J. & Bar-Joseph, Z. Clustering short time series gene expression data. Bioinformatics 21, i159–i168 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Katoh, K. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30, 3059–3066 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Vercruysse, J. et al. Comparative transcriptomics enables the identification of functional orthologous genes involved in early leaf growth. Plant Biotechnol. J. 18, 553–567 (2020).

    Article  CAS  PubMed  Google Scholar 

  46. Wu, H. W. et al. A noncoding RNA transcribed from the AGAMOUS (AG) second intron binds to CURLY LEAF and represses AG expression in leaves. New Phytol. 219, 1480–1491 (2018).

    Article  CAS  PubMed  Google Scholar 

  47. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Nicol, J. W., Helt, G. A., Blanchard, S. G., Raja, A. & Loraine, A. E. The Integrated Genome Browser: free software for distribution and exploration of genome-scale datasets. Bioinformatics 25, 2730–2731 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).

  52. Yu, G., Wang, L. G. & He, Q. Y. ChIP seeker: an R/Bioconductor package for ChIP peak annotation, comparison and visualization. Bioinformatics 31, 2382–2383 (2015).

    Article  CAS  PubMed  Google Scholar 

  53. Bailey, T. L. et al. MEME suite: tools for motif discovery and searching. Nucleic Acids Res. 37, W202–W208 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bartlett, A. et al. Mapping genome-wide transcription-factor binding sites using DAP-seq. Nat. Protoc. 12, 1659–1672 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinform. 9, 559 (2008).

    Article  CAS  Google Scholar 

  56. Huynh-Thu, V. A., Irrthum, A., Wehenkel, L. & Geurts, P. Inferring regulatory networks from expression data using tree-based methods. PLoS ONE 5, e12776 (2010).

  57. Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Morrissey, E. R., Juárez, M. A., Denby, K. J., Burroughs, N. J. & Ideker, T. On reverse engineering of gene interaction networks using time course data with repeated measurements. Bioinformatics 26, 2305–2312 (2010).

    Article  CAS  PubMed  Google Scholar 

  59. Schwarz, B., Azodi, C. B., Shiu, S.-H. & Bauer, P. Putative cis-regulatory elements predict iron deficiency responses in Arabidopsis roots. Plant Physiol. https://doi.org/10.1104/pp.19.00760 (2020).

  60. Wu, T.-Y., Gruissem, W. & Bhullar, N. K. Targeting intracellular transport combined with efficient uptake and storage significantly increases grain iron and zinc levels in rice. Plant Biotechnol. J. 17, 9–20 (2019).

    Article  CAS  PubMed  Google Scholar 

  61. Liang, Y. et al. A nondestructive method to estimate the chlorophyll content of Arabidopsis seedlings. Plant Methods 13, 26 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Ma, C., Xin, M., Feldmann, K. A. & Wang, X. Machine learning-based differential network analysis: a study of stress-responsive transcriptomes in Arabidopsis. Plant Cell 26, 520–537 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Singapore-MIT Alliance for Research and Technology Program (SMART) and by Industry Alignment Fund—Prepositioning Program (IAF-PP).

Author information

Authors and Affiliations

Authors

Contributions

T.Y.W. led the project design, the data collection and interpretation and the drafting of manuscript. C.A. and M.J.L. performed cis-regulatory element analysis and wrote the manuscript. D.U. conceived the project and wrote the manuscript. H.G. and S.K. prepared genetic mutants and collected experimental data. All authors contributed to finalizing the manuscript.

Corresponding authors

Correspondence to Ting-Ying Wu or Daisuke Urano.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Plants thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–14.

Reporting Summary

Supplementary Data 1

Supporting dataset for A. thaliana.

Supplementary Data 2

Supporting dataset for M. polymorpha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, TY., Goh, H., Azodi, C.B. et al. Evolutionarily conserved hierarchical gene regulatory networks for plant salt stress response. Nat. Plants 7, 787–799 (2021). https://doi.org/10.1038/s41477-021-00929-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-021-00929-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing