Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

FERONIA restricts Pseudomonas in the rhizosphere microbiome via regulation of reactive oxygen species

Abstract

Maintaining microbiome structure is critical for the health of both plants and animals. By re-screening a collection of Arabidopsis mutants affecting root immunity and hormone crosstalk, we identified a FERONIA (FER) receptor kinase mutant (fer-8) with a rhizosphere microbiome enriched in Pseudomonas fluorescens without phylum-level dysbiosis. Using microbiome transplant experiments, we found that the fer-8 microbiome was beneficial. The effect of FER on rhizosphere pseudomonads was largely independent of its immune scaffold function, role in development and jasmonic acid autoimmunity. We found that the fer-8 mutant has reduced basal levels of reactive oxygen species (ROS) in roots and that mutants deficient in NADPH oxidase showed elevated rhizosphere pseudomonads. The addition of RALF23 peptides, a FER ligand, was sufficient to enrich P. fluorescens. This work shows that FER-mediated ROS production regulates levels of beneficial pseudomonads in the rhizosphere microbiome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: HSM13/FER inhibits rhizosphere Pseudomonas growth.
Fig. 2: Pseudomonadaceae are enriched in the rhizosphere microbiome of fer-8.
Fig. 3: The fer-8 microbiome is beneficial.
Fig. 4: Pseudomonas enrichment in fer-8 is largely independent of jasmonic acid signalling.
Fig. 5: FER regulates root ROS to control pseudomonads.
Fig. 6: RALF enriches Pseudomonas levels in the rhizosphere.

Similar content being viewed by others

Data availability

The microbiome sequencing data have been deposited in the National Center for Biotechnology Information BioProject database under accession PRJNA559927. The RNA-seq raw sequencing and analysed data have been deposited in the National Center for Biotechnology Information Gene Expression Omnibus database under accession GSE167143.

Code availability

The code related to microbiome sequencing and RNA-seq analysis is available from the Haney laboratory GitHub repository (https://github.com/haneylab/).

References

  1. Rosenberg, E. & Zilber-Rosenberg, I. Microbes drive evolution of animals and plants: the hologenome concept. mBio 7, e01395 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lugtenberg, B. & Kamilova, F. Plant-growth-promoting rhizobacteria. Annu. Rev. Microbiol. 63, 541–556 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Zhang, J. et al. NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice. Nat. Biotechnol. 37, 676–684 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. Kwak, M. J. et al. Rhizosphere microbiome structure alters to enable wilt resistance in tomato. Nat. Biotechnol. 36, 1100–1109 (2018).

    Article  CAS  Google Scholar 

  5. Dimkpa, C., Weinand, T. & Asch, F. Plant–rhizobacteria interactions alleviate abiotic stress conditions. Plant Cell Environ. 32, 1682–1694 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Abdelaziz, M. E. et al. Piriformospora indica alters Na+/K+ homeostasis, antioxidant enzymes and LeNHX1 expression of greenhouse tomato grown under salt stress. Sci. Hortic. 256, 108532 (2019).

    Article  CAS  Google Scholar 

  7. Chen, T. et al. A plant genetic network for preventing dysbiosis in the phyllosphere. Nature 580, 653–657 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Levy, M., Kolodziejczyk, A. A., Thaiss, C. A. & Elinav, E. Dysbiosis and the immune system. Nat. Rev. Immunol. 17, 219–232 (2017).

    Article  CAS  PubMed  Google Scholar 

  9. Berendsen, R. L. et al. Disease-induced assemblage of a plant-beneficial bacterial consortium. ISME J. 12, 1496–1507 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mendes, R. et al. Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332, 1097–1100 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Berendsen, R. L., Pieterse, C. M. & Bakker, P. A. The rhizosphere microbiome and plant health. Trends Plant Sci. 17, 478–486 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. Vurukonda, S. S., Vardharajula, S., Shrivastava, M. & SkZ,A. Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiol. Res. 184, 13–24 (2016).

    Article  PubMed  Google Scholar 

  13. Haas, D. & Defago, G. Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat. Rev. Microbiol. 3, 307–319 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Bakker, P. A., Pieterse, C. M. & van Loon, L. C. Induced systemic resistance by fluorescent Pseudomonas spp. Phytopathology 97, 239–243 (2007).

    Article  PubMed  Google Scholar 

  15. Weller, D. M., Howie, W. J. & Cook, R. J. Relationship between in vitro inhibition of Gaeumannomyces graminis var. tritici and suppression of take-all of wheat by fluorescent pseudomonads. Phytopathology 78, 1094–1100 (1988).

    Article  Google Scholar 

  16. Mazurier, S., Corberand, T., Lemanceau, P. & Raaijmakers, J. M. Phenazine antibiotics produced by fluorescent pseudomonads contribute to natural soil suppressiveness to Fusarium wilt. ISME J. 3, 977–991 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Stutz, E., Défago, G. & Kern, H. Naturally occurring fluorescent pseudomonads involved in suppression of black root rot of tobacco. Phytopathology 76, 181–185 (1986).

    Article  Google Scholar 

  18. Shipton, P. Monoculture and soilborne plant pathogens. Annu. Rev. Phytopathol. 15, 387–407 (1977).

    Article  Google Scholar 

  19. Simon, A. & Sivasithamparam, K. Pathogen-suppression: a case study in biological suppression of Gaeumannomyces graminis var. tritici in soil. Soil Biol. Biochem. 21, 331–337 (1989).

    Article  Google Scholar 

  20. Cook, R. J. The influence of rotation crops on take-all decline phenomenon. Phytopathology 71, 189–192 (1981).

    Article  Google Scholar 

  21. Haney, C. H., Samuel, B. S., Bush, J. & Ausubel, F. M. Associations with rhizosphere bacteria can confer an adaptive advantage to plants. Nat. Plants 1, 15051 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang, X. C., Millet, Y. A., Cheng, Z., Bush, J. & Ausubel, F. M. Jasmonate signalling in Arabidopsis involves SGT1b–HSP70–HSP90 chaperone complexes. Nat. Plants 1, 15049 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Johnsen, K. & Nielsen, P. Diversity of Pseudomonas strains isolated with King’s B and Gould’s S1 agar determined by repetitive extragenic palindromic-polymerase chain reaction, 16S rDNA sequencing and Fourier transform infrared spectroscopy characterisation. FEMS Microbiol. Lett. 173, 155–162 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Noguchi, T. et al. Brassinosteroid-insensitive dwarf mutants of Arabidopsis accumulate brassinosteroids. Plant Physiol. 121, 743–752 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Eng, R. C. & Wasteneys, G. O. The microtubule plus-end tracking protein ARMADILLO-REPEAT KINESIN1 promotes microtubule catastrophe in Arabidopsis. Plant Cell 26, 3372–3386 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Guo, H. et al. FERONIA receptor kinase contributes to plant immunity by suppressing jasmonic acid signaling in Arabidopsis thaliana. Curr. Biol. 28, 3316–3324.e6 (2018).

    Article  CAS  PubMed  Google Scholar 

  27. Haruta, M., Sabat, G., Stecker, K., Minkoff, B. B. & Sussman, M. R. A peptide hormone and its receptor protein kinase regulate plant cell expansion. Science 343, 408–411 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Duan, Q., Kita, D., Li, C., Cheung, A. Y. & Wu, H. M. FERONIA receptor-like kinase regulates RHO GTPase signaling of root hair development. Proc. Natl Acad. Sci. USA 107, 17821–17826 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kim, B. R. et al. Deciphering diversity indices for a better understanding of microbial communities. J. Microbiol. Biotechnol. 27, 2089–2093 (2017).

    Article  PubMed  Google Scholar 

  30. Melnyk, R. A., Hossain, S. S. & Haney, C. H. Convergent gain and loss of genomic islands drive lifestyle changes in plant-associated Pseudomonas. ISME J. 13, 1575–1588 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Haney, C. H. et al. Rhizosphere-associated Pseudomonas induce systemic resistance to herbivores at the cost of susceptibility to bacterial pathogens. Mol. Ecol. 27, 1833–1847 (2018).

    Article  CAS  PubMed  Google Scholar 

  32. Carrion, V. J. et al. Pathogen-induced activation of disease-suppressive functions in the endophytic root microbiome. Science 366, 606–612 (2019).

    Article  CAS  PubMed  Google Scholar 

  33. Raaijmakers, J. M. et al. Dose–response relationships in biological control of Fusarium wilt of radish by Pseudomonas spp. Phytopathology 85, 1075–1080 (1995).

    Article  Google Scholar 

  34. Ellis, C. & Turner, J. G. A conditionally fertile coi1 allele indicates cross-talk between plant hormone signalling pathways in Arabidopsis thaliana seeds and young seedlings. Planta 215, 549–556 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Zhao, C. et al. The LRXs–RALFs–FER module controls plant growth and salt stress responses by modulating multiple plant hormones. Natl Sci. Rev. 8, nwaa149 (2021).

    Article  CAS  PubMed  Google Scholar 

  36. Spoel, S. H. et al. NPR1 modulates cross-talk between salicylate- and jasmonate-dependent defense pathways through a novel function in the cytosol. Plant Cell 15, 760–770 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cao, H., Bowling, S. A., Gordon, A. S. & Dong, X. Characterization of an Arabidopsis mutant that is nonresponsive to inducers of systemic acquired resistance. Plant Cell 6, 1583–1592 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dewdney, J. et al. Three unique mutants of Arabidopsis identify EDS loci required for limiting growth of a biotrophic fungal pathogen. Plant J. 24, 205–218 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Zhang, Y., Goritschnig, S., Dong, X. & Li, X. A gain-of-function mutation in a plant disease resistance gene leads to constitutive activation of downstream signal transduction pathways in suppressor of npr1-1, constitutive 1. Plant Cell 15, 2636–2646 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Stegmann, M. et al. The receptor kinase FER is a RALF-regulated scaffold controlling plant immune signaling. Science 355, 287–289 (2017).

    Article  CAS  PubMed  Google Scholar 

  41. Miller, G. et al. The plant NADPH oxidase RBOHD mediates rapid systemic signaling in response to diverse stimuli. Sci. Signal. 2, ra45 (2009).

    Article  PubMed  Google Scholar 

  42. Roux, M. et al. The Arabidopsis leucine-rich repeat receptor-like kinases BAK1/SERK3 and BKK1/SERK4 are required for innate immunity to hemibiotrophic and biotrophic pathogens. Plant Cell 23, 2440–2455 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Schwessinger, B. et al. Phosphorylation-dependent differential regulation of plant growth, cell death, and innate immunity by the regulatory receptor-like kinase BAK1. PLoS Genet. 7, e1002046 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhao, C. et al. Leucine-rich repeat extensin proteins regulate plant salt tolerance in Arabidopsis. Proc. Natl Acad. Sci. USA 115, 13123–13128 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Xiao, Y. et al. Mechanisms of RALF peptide perception by a heterotypic receptor complex. Nature 572, 270–274 (2019).

    Article  CAS  PubMed  Google Scholar 

  46. Masachis, S. et al. A fungal pathogen secretes plant alkalinizing peptides to increase infection. Nat. Microbiol. 1, 16043 (2016).

    Article  CAS  PubMed  Google Scholar 

  47. Zhang, X. et al. Nematode-encoded RALF peptide mimics facilitate parasitism of plants through the FERONIA receptor kinase. Mol. Plant 13.10, 1434–1454 (2020).

    Article  Google Scholar 

  48. Thynne, E. et al. Fungal phytopathogens encode functional homologues of plant rapid alkalinization factor (RALF) peptides. Mol. Plant Pathol. 18, 811–824 (2017).

    Article  CAS  PubMed  Google Scholar 

  49. Hussain, M. et al. Bacterial community assemblages in the rhizosphere soil, root endosphere and cyst of soybean cyst nematode-suppressive soil challenged with nematodes. FEMS Microbiol. Ecol. 94, fiy142 (2018).

    Article  CAS  Google Scholar 

  50. Huang, A. C. et al. A specialized metabolic network selectively modulates Arabidopsis root microbiota. Science 364, eaau6389 (2019).

    Article  CAS  PubMed  Google Scholar 

  51. Stringlis, I. A. et al. MYB72-dependent coumarin exudation shapes root microbiome assembly to promote plant health. Proc. Natl Acad. Sci. USA 115, E5213–E5222 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhou, F. et al. Co-incidence of damage and microbial patterns controls localized immune responses in roots. Cell 180, 440–453 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yu, K. et al. Rhizosphere-associated Pseudomonas suppress local root immune responses by gluconic acid-mediated lowering of environmental pH. Curr. Biol. 29, 3913–3920 (2019).

    Article  CAS  PubMed  Google Scholar 

  54. Zhang, X., Yang, Z., Wu, D. & Yu, F. RALF–FERONIA signaling: linking plant immune response with cell growth. Plant Commun. 1, 100084 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Campbell, L. & Turner, S. R. A comprehensive analysis of RALF proteins in green plants suggests there are two distinct functional groups. Front. Plant Sci. 8, 37 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Gómez-Gómez, L. & Boller, T. FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol. Cell 5, 1003–1011 (2000).

    Article  PubMed  Google Scholar 

  57. Zipfel, C. et al. Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell 125, 749–760 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Dobon, A. et al. Novel disease susceptibility factors for fungal necrotrophic pathogens in Arabidopsis. PLoS Pathog. 11, e1004800 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Lane, M. C., Alteri, C. J., Smith, S. N. & Mobley, H. L. Expression of flagella is coincident with uropathogenic Escherichia coli ascension to the upper urinary tract. Proc. Natl Acad. Sci. USA 104, 16669–16674 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. James, G. V. et al. User guide for mapping-by-sequencing in Arabidopsis. Genome Biol. 14, R61 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Thompson, L. R. et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 551, 457–463 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Ding, Y. et al. Opposite roles of salicylic acid receptors NPR1 and NPR3/NPR4 in transcriptional regulation of plant immunity. Cell 173, 1454–1467 (2018).

    Article  CAS  PubMed  Google Scholar 

  66. Drenkard, E. et al. A simple procedure for the analysis of single nucleotide polymorphisms facilitates map-based cloning in Arabidopsis. Plant Physiol. 124, 1483–1492 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Geels, F. & Schippers, B. Selection of antagonistic fluorescent Pseudomonas spp. and their root colonization and persistence following treatment of seed potatoes. J. Phytopathol. 108, 193–206 (1983).

    Article  Google Scholar 

  68. Lamers, J., Schippers, B. & Geels, F. Soil-borne diseases of wheat in the Netherlands and results of seed bacterization with pseudomonads against Gaeumannomyces graminis var. tritici, associated with disease resistance. In Cereal Breeding Related to Integrated Cereal Production: Proceedings of the Conference of the Cereal Section of EUCARPIA 134–139 (European Association for Research on Plant Breeding, 1988).

  69. Holloway, B. W. Genetic recombination in Pseudomonas aeruginosa. J. Gen. Microbiol. 13, 572–581 (1955).

    CAS  PubMed  Google Scholar 

  70. Branda, S. S., Gonzalez-Pastor, J. E., Ben-Yehuda, S., Losick, R. & Kolter, R. Fruiting body formation by Bacillus subtilis. Proc. Natl Acad. Sci. USA 98, 11621–11626 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Denef, V. J. et al. Biphenyl and benzoate metabolism in a genomic context: outlining genome-wide metabolic networks in Burkholderia xenovorans LB400. Appl. Environ. Microbiol. 70.8, 4961–4970 (2004).

    Article  Google Scholar 

  72. Baldani, J., Baldani, V., Seldin, L. & Döbereiner, J. Characterization of Herbaspirillum seropedicae gen. nov., sp. nov., a root-associated nitrogen-fixing bacterium. Int. J. System. Evol. Microbiol. 36, 86–93 (1986).

    CAS  Google Scholar 

  73. Sawana, A., Adeolu, M. & Gupta, R. S. Molecular signatures and phylogenomic analysis of the genus Burkholderia: proposal for division of this genus into the emended genus Burkholderia containing pathogenic organisms and a new genus Paraburkholderia gen. nov. harboring environmental species. Front. Genet. 5, 429 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Cuppels, D. A. Generation and characterization of Tn5 insertion mutations in Pseudomonas syringae pv. tomato. Appl. Environ. Microbiol. 51, 323–327 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Price, M. N. et al. Mutant phenotypes for thousands of bacterial genes of unknown function. Nature 557, 503–509 (2018).

    Article  CAS  PubMed  Google Scholar 

  76. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-seq data with or without a reference genome. BMC Bioinform. 12, 323 (2011).

    Article  CAS  Google Scholar 

  78. Tian, T. et al. agriGO v2.0: a GO analysis toolkit for the agricultural community, 2017 update. Nucleic Acids Res. 45, W122–W129 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hickman, R. et al. Architecture and dynamics of the jasmonic acid gene regulatory network. Plant Cell 29, 2086–2105 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Nemhauser, J. L., Hong, F. & Chory, J. Different plant hormones regulate similar processes through largely nonoverlapping transcriptional responses. Cell 126, 467–475 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Genenncher, B. et al. Nucleoporin-regulated MAP kinase signaling in immunity to a necrotrophic fungal pathogen. Plant Physiol. 172, 1293–1305 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Kirchhelle, C. & Moore, I.A simple chamber for long-term confocal imaging of root and hypocotyl development. J. Vis. Exp. 2017, e55331 (2017).

    Google Scholar 

  83. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank F. M. Ausubel for critical reading of the manuscript and generous provision of the hsm mutant collection; A. Y. Cheung, Z. Y. Wang, X. Li, Y. Zhang and G. Wasteneys for kindly providing seed stocks; and the laboratory of M. Hirst for assistance with sequencing. This work was supported by an NSERC Discovery Grant (NSERC-RGPIN-2016-04121) and Weston Seeding Food Innovation grants awarded to C.H.H. Y.S. was supported by a kick-start award from the Michael Smith Laboratories (UBC) and a fellowship from the Chinese Postdoctoral Science Foundation. Early stages of this work were supported by NIH R37 grant GM48707 and NSF grants MCB-0519898 and IOS-0929226 awarded to F. Ausubel.

Author information

Authors and Affiliations

Authors

Contributions

C.H.H. and Y.S. conceived of the project and designed the experiments. Y.S. performed the majority of experiments and data analysis. X.-C.Z. performed the previous hsm screen. A.J.W. analysed the RNA-seq and microbiome profiling data. D.T. conducted the confocal microscopy imaging. Q.G. performed statistical analysis for the expression of hormone-responsive genes and Pearson correlation assays. S.S., Y.L. and L.W. helped with the gnotobiotic plant assays. Experiments related to mfec were performed by R.S. with input from S.Y.H. C.H.H. and Y.S. wrote the manuscript with input from all authors.

Corresponding author

Correspondence to Cara H. Haney.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Plants thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–10.

Reporting Summary

Supplementary Tables

Supplementary Tables 1–4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Y., Wilson, A.J., Zhang, XC. et al. FERONIA restricts Pseudomonas in the rhizosphere microbiome via regulation of reactive oxygen species. Nat. Plants 7, 644–654 (2021). https://doi.org/10.1038/s41477-021-00914-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-021-00914-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing