Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ursodeoxycholic acid ameliorates erectile dysfunction and corporal fibrosis in diabetic rats by inhibiting the TGF-β1/Smad2 pathway

Abstract

Corporal tissue fibrosis is critical in diabetes-associated erectile dysfunction. Transforming growth factor-β1/Small mothers against decapentaplegic-2 (TGF-β1/Smad2) contributes to the induction of fibrosis in corporal tissue. Smad7 is accepted as a general negative regulator of Smad signaling, although its role in corporal fibrosis is unknown. Ursodeoxycholic acid (UDCA) is a hydrophilic bile acid used for biliary and liver related disorders and has antifibrotic effects in the liver. This study investigated the effects of UDCA on diabetic erectile dysfunction. Forty-eight male Spraque Dawley rats were divided into six groups: nondiabetic (n = 6), nondiabetic+20 mg/kg UDCA (n = 6), nondiabetic+80 mg/kg UDCA (n = 6), diabetic (n = 10), diabetic+20 mg/kg UDCA (n = 10), diabetic+80 mg/kg UDCA (n = 10). Diabetes was induced by intraperitoneal injection of 60 mg/kg Streptozocin. UDCA (20 and 80 mg/kg/day) or saline was subsequently administered via oral gavage for 56 days. Erectile function was evaluated as measurement of maximum intracavernosal pressure (m-ICP)/mean arterial pressure (MAP) and total ICP/MAP. Corporal tissues were evaluated by Western blotting and Masson’s trichrome staining. Electrical stimulation-induced m-ICP/MAP responses were higher in UDCA-treated diabetic rats compared to untreated diabetic rats, respectively (20 mg/kg; 4 V: 0.77 ± 0.11 vs 0.45 ± 0.09, p = 0.0001 and 80 mg/kg; 4 V: 0.78 ± 0.11 vs 0.45 ± 0.09, p = 0.0001) UDCA prevented the increase in phospho-Smad2 and fibronectin protein expressions in diabetic corporal tissue both at 20 mg/kg (p = 0.0002, p = 0.002 respectively) and 80 mg/kg doses (p < 0.0001 for both). Smad7 protein expressions were significantly increased in the UDCA-treated diabetic groups compared to the untreated diabetic group (20 mg/kg: p = 0.0079; 80 mg/kg: p = 0.004). Furthermore, UDCA significantly prevented diabetes-induced increase in collagen (20 mg/kg: p = 0.0172; 80 mg/kg: p = 0.0003) and smooth muscle loss (20 mg/kg: p = 0.044; 80 mg/kg: p = 0.039). In conclusion, UDCA has a potential protective effect on erectile function in diabetic rats by altering fibrotic pathways via inhibition of TGF-β1/Smad2 and activation of Smad7.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental design. Rats received an i.p. injection of STZ or vehicle.
Fig. 2: Representative ICP (green) and MAP (red) tracings were measured through stimulation of 8 V for 1 min (scale interval 60 s).
Fig. 3: Treatment of UDCA augmented erectile function elicited by electrical stimulation.
Fig. 4: Treatment of UDCA augmented erectile function elicited by electrical stimulation.
Fig. 5: The levels of pSmad2, pSmad2/Smad2, Smad7 and fibronectin protein expression in corpus cavernosum of ND, D and ND + UDCA (20 mg/kg and 80 mg/kg, respectively).
Fig. 6: Histological changes in the rat corpus cavernosum mediated by UDCA.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Maseroli E, Corona G, Rastrelli G, Lotti F, Cipriani S, Forti G, et al. Prevalence of endocrine and metabolic disorders in subjects with erectile dysfunction: a comparative study. J Sex Med. 2015;12:956–65.

    Article  PubMed  Google Scholar 

  2. Kouidrat Y, Pizzol D, Cosco T, Thompson T, Carnaghi M, Bertoldo A, et al. High prevalence of erectile dysfunction in diabetes: a systematic review and meta-analysis of 145 studies. Diabet Med. 2017;34:1185–92.

    Article  CAS  PubMed  Google Scholar 

  3. Johannes CB, Araujo AB, Feldman HA, Derby CA, Kleinman KP, McKinlay JB. Incidence of erectile dysfunction in men 40 to 69 years old: longitudinal results from the Massachusetts male aging study. J Urol. 2000;163:460–3.

    Article  CAS  PubMed  Google Scholar 

  4. Laumann EO, Nicolosi A, Glasser DB, Paik A, Gingell C, Moreira E, et al. Sexual problems among women and men aged 40-80 y: prevalence and correlates identified in the Global Study of Sexual Attitudes and Behaviors. Int J Impot Res. 2005;17:39–57. https://doi.org/10.1038/sj.ijir.3901250.

    Article  CAS  PubMed  Google Scholar 

  5. Feldman HA, Goldstein I, Hatzichristou DG, Krane RJ, McKinlay JB. Impotence and its medical and psychosocial correlates: results of the Massachusetts Male Aging Study. J Urol. 1994;151:54–61.

    Article  CAS  PubMed  Google Scholar 

  6. Kovanecz I, Nolazco G, Ferrini MG, Toblli JE, Heydarkhan S, Vernet D, et al. Early onset of fibrosis within the arterial media in a rat model of type 2 diabetes mellitus with erectile dysfunction. BJU Int. 2009;103:1396–404.

    Article  PubMed  Google Scholar 

  7. Zhang LW, Piao S, Choi MJ, Shin HY, Jin HR, Kim WJ, et al. Role of increased penile expression of transforming growth factor-beta1 and activation of the smad signaling pathway in erectile dysfunction in streptozotocin-induced diabetic rats. J Sex Med. 2008;5:2318–29.

    Article  CAS  PubMed  Google Scholar 

  8. Hayashi H, Abdollah S, Qiu Y, Cai J, Xu YY, Grinnell BW, et al. The MAD-related protein Smad7 associates with the TGFbeta receptor and functions as an antagonist of TGFbeta signaling. Cell. 1997;89:1165–73.

    Article  CAS  PubMed  Google Scholar 

  9. Zhu HJ, Iaria J, Sizeland AM. Smad7 differentially regulates transforming growth factor beta-mediated signaling pathways. J. Biol. Chem. 1999;274:258–64.

    Article  Google Scholar 

  10. Yan X, Liao H, Cheng M, Shi X, Lin X, Feng XH, et al. Smad7 Protein Interacts with Receptor-regulated Smads (R-Smads) to Inhibit Transforming Growth Factor-β (TGF-β)/Smad Signaling. J Biol Chem. 2016;291:382–92.

    Article  CAS  PubMed  Google Scholar 

  11. Ulloa L, Doody J, Massague J. Inhibition of transforming growth factor-beta/SMAD signalling by the interferon-gamma/STAT pathway. Nature. 1999;397:710–3.

    Article  CAS  ADS  PubMed  Google Scholar 

  12. Bitzer M, von Gersdorff G, Liang D, Dominguez-Rosales A, Beg AA, Rojkind M. A mechanism of suppression of TGF-beta/SMAD signaling by NF-kappa B/RelA. Genes Dev. 2000;14:187–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Li JH, Zhu HJ, Huang XR, Lai KN, Johnson RJ, Lan HY. Smad7 inhibits fibrotic effect of TGF-Beta on renal tubular epithelial cells by blocking Smad2 activation. J Am Soc Nephrol. 2002;13:1464–72.

    Article  CAS  PubMed  Google Scholar 

  14. Dooley S, Hamzavi J, Breitkopf K, et al. Smad7 prevents activation of hepatic stellate cells and liver fibrosis in rats. Gastroenterology. 2003;125:178–91.

    Article  CAS  PubMed  Google Scholar 

  15. Monteleone G, Pallone F, MacDonald TT. Smad7 in TGF-beta-mediated negative regulation of gut inflammation. Trends Immunol. 2004;25:513–7.

    Article  CAS  PubMed  Google Scholar 

  16. Wang W, Huang XR, Li AG, Liu F, Li JH, Truong LD, et al. Signaling mechanism of TGF-beta1 in prevention of renal inflammation: role of Smad7. J Am Soc Nephrol. 2005;16:1371–83.

    Article  CAS  PubMed  Google Scholar 

  17. He W, Li AG, Wang D, Han S, Zheng B, Goumans MJ, et al. Overexpression of Smad7 results in severe pathological alterations in multiple epithelial tissues. EMBO J. 2002;21:2580–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu X, Lee J, Cooley M, Bhogte E, Hartley S, Glick A. Smad7 but not Smad6 cooperates with oncogenic ras to cause malignant conversion in a mouse model for squamous cell carcinoma. Cancer Res. 2003;63:7760–8.

    CAS  PubMed  Google Scholar 

  19. Wang B, Omar A, Angelovska T, Drobic V, Rattan SG, Jones SC, et al. Regulation of collagen synthesis by inhibitory Smad7 in cardiac myofibroblasts. Am J Physiol Heart Circ Physiol. 2007;293:H1282–90.

    Article  CAS  PubMed  Google Scholar 

  20. Dowdy SC, Mariani A, Reinholz MM, Keeney GL, Spelsberg TC, Podratz KC, et al. Overexpression of the TGF-beta antagonist Smad7 in endometrial cancer. Gynecol Oncol. 2005;96:368–73.

    Article  CAS  PubMed  Google Scholar 

  21. Javelaud D, Mohammad KS, McKenna CR, Fournier P, Luciani F, Niewolna M, et al. Stable overexpression of Smad7 in human melanoma cells impairs bone metastasis. Cancer Res. 2007;67:2317–24.

    Article  CAS  PubMed  Google Scholar 

  22. Verrecchia F, Chu ML, Mauviel A. Identification of novel TGF-beta /Smad gene targets in dermal fibroblasts using a combined cDNA microarray/promoter transactivation approach. J Biol Chem. 2001;276:17058–62.

    Article  CAS  PubMed  Google Scholar 

  23. Verrecchia F, Vindevoghel L, Lechleider RJ, Uitto J, Roberts AB, Mauviel A. Smad3/AP-1 interactions control transcriptional responses to TGF-beta in a promoter-specific manner. Oncogene. 2001;20:3332–40.

    Article  CAS  PubMed  Google Scholar 

  24. Chen Y, Blom IE, Sa S, Goldschmeding R, Abraham DJ, Leask A. CTGF expression in mesangial cells: involvement of SMADs, MAP kinase, and PKC. Kidney Int. 2002;62:1149–59.

    Article  CAS  PubMed  Google Scholar 

  25. Hocevar BA, Brown TL, Howe PH. TGF-beta induces fibronectin synthesis through a c-Jun N-terminal kinase-dependent, Smad4-independent pathway. EMBO J. 1999;18:1345–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhou F, Li GY, Gao ZZ, Liu J, Liu T, Li WR, et al. The tgf-beta1/smad/ctgf pathway and corpus cavernosum fibrous-muscular alterations in rats with streptozotocin-induced diabetes. J Androl. 2012;33:651–9.

    Article  CAS  PubMed  Google Scholar 

  27. Vickers MA, Satyanarayana R. Phosphodiesterase type 5 inhibitors for the treatment of erectile dysfunction in patients with diabetes mellitus. Int J Impot Res. 2002;14:466–71. https://doi.org/10.1038/sj.ijir.3900910.

    Article  CAS  PubMed  Google Scholar 

  28. Burnett AL, Nehra A, Breau RH, Culkin DJ, Faraday MM, Hakim LS, et al. Erectile dysfunction: AUA Guideline. J Urol. 2018;200:633–41.

    Article  PubMed  Google Scholar 

  29. Jourdan JP, Bureau R, Rochais C, Dallemagne P. Drug repositioning: a brief overview. J Pharm Pharmacol. 2020;72:1145–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. El-Sakka AI. Reversion of penile fibrosis: current information and a new horizon. Arab J Urol. 2011;9:49–55.

    Article  PubMed  PubMed Central  Google Scholar 

  31. El-Sakka AI, Yassin AA. Amelioration of penile fibrosis: Myth or reality. J Androl. 2010;31:324–35.

    Article  CAS  PubMed  Google Scholar 

  32. Keith BD. Ursodeoxycholic acid to inhibit the growth of hepatic metastases. Med Hypotheses. 2000;55:379–82.

    Article  CAS  PubMed  Google Scholar 

  33. Ikegami T, Matsuzaki Y. Ursodeoxycholic acid: mechanism of action and novel clinical applications. Hepatol Res. 2008;38:123–31.

    Article  CAS  PubMed  Google Scholar 

  34. Pathil A, Mueller J, Ludwig JM, Wang J, Warth A, Chamulitrat W, et al. Ursodeoxycholyl lysophosphatidylethanolamide attenuates hepatofibrogenesis by impairment of tgf-beta1/smad2/3 signalling. Br J Pharmacol. 2014;171:5113–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liang TJ, Yuan JH, Tan YR, Ren WH, Han GQ, Zhang J, et al. Effect of ursodeoxycholic acid on tgf beta1/smad signaling pathway in rat hepatic stellate cells. Chin Med J. 2009;122:1209–13.

    CAS  PubMed  Google Scholar 

  36. Li X, Han KQ, Shi YN, Men SZ, Li S, Sun MH, et al. [effects and mechanisms of ursodeoxycholic acid on isoprenaline-induced myocardial fibrosis in mice]. Zhonghua Yi Xue Za Zhi. 2017;97:387–91.

    CAS  PubMed  Google Scholar 

  37. Percie du Sert N, Ahluwalia A, Alam S, Avey MT, Baker M, Browne WJ, et al. Reporting animal research: explanation and elaboration for the arrive guidelines 2.0. PLoS Biol. 2020;18:e3000411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Qabazard B, Yousif M, Mousa A, Phillips OA. GYY4137 attenuates functional impairment of corpus cavernosum and reduces fibrosis in rats with STZ-induced diabetes by inhibiting the TGF-β1/Smad/CTGF pathway. Biomed Pharmacother. 2021;138:111486.

    Article  CAS  PubMed  Google Scholar 

  39. Etuk EU. Animals models for studying diabetes mellitus. Agric Biol J North Am. 2010;1:130–4.

    CAS  Google Scholar 

  40. Buko VU, Kuzmitskaya-Nikolaeva IA, Naruta EE, Lukivskaya OY, Kirko SN, Tauschel HD. Ursodeoxycholic acid dose-dependently improves liver injury in rats fed a methionine- and choline-deficient diet. Hepatol Res. 2011;41:647–59.

    Article  CAS  PubMed  Google Scholar 

  41. Buko VU, Lukivskaya OY, Naruta EE, Belonovskaya EB, Tauschel HD. Protective effects of norursodeoxycholic acid versus ursodeoxycholic acid on thioacetamide-induced rat liver fibrosis. J Clin Exp Hepatol. 2014;4:293–301.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Quinlan DM, Nelson RJ, Partin AW, Mostwin JL, Walsh PC. The rat as a model for the study of penile erection. J Urol. 1989;141:656–61.

    Article  CAS  PubMed  Google Scholar 

  43. Rehman J, Christ G, Melman A, Fleischmann J. Intracavernous pressure responses to physical and electrical stimulation of the cavernous nerve in rats. Urology. 1998;51:640–4.

    Article  CAS  PubMed  Google Scholar 

  44. Yilmaz-Oral D, Onder A, Kaya-Sezginer E, Oztekin CV, Zor M, Gur S. Restorative effects of red onion (Allium cepa L.) juice on erectile function after-treatment with 5α-reductase inhibitor in rats. Int J Impot Res. 2022;34:269–76. https://doi.org/10.1038/s41443-021-00421-y.

    Article  CAS  PubMed  Google Scholar 

  45. Sezen SF, Burnett AL. Intracavernosal pressure monitoring in mice: responses to electrical stimulation of the cavernous nerve and to intracavernosal drug administration. J Androl. 2000;21:311.

    Article  CAS  PubMed  Google Scholar 

  46. Hannan JL, Kutlu O, Stopak BL, Liu X, Castiglione F, Hedlund P, et al. Valproic acid prevents penile fibrosis and erectile dysfunction in cavernous nerve-injured rats. J Sex Med. 2014;11:1442–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kamshoushi ASN, Helal S, Hassaan P, Omar H. A study of the correlation between angiotensin (1-7) and the histopathological changes in the penises of experimentally diabetic rats. Open J Endocr Metab Dis. 2018;8:81–92.

    Article  Google Scholar 

  48. Abraham-Juárez MJ. Western blot in maize. Bio-protoc. 2019;101:e3257.

    Google Scholar 

  49. Zhou F, Xin H, Liu T, Li GY, Gao ZZ, Liu J, et al. Effects of icariside II on improving erectile function in rats with streptozotocin-induced diabetes. J Androl. 2012;33:832–44.

    Article  CAS  PubMed  Google Scholar 

  50. Barut EN, Engin S, Yasar YK, Sezen SF. Riluzole, a neuroprotective agent, preserves erectile function following bilateral cavernous nerve injury in male rats. Int J Impot Res. https://doi.org/10.1038/s41443-023-00680-x. Epub ahead of print (2023).

  51. Hatzimouratidis K, Hatzichristou D. How to treat erectile dysfunction in men with diabetes: from pathophysiology to treatment. Curr Diab Rep. 2014;14:545.

    Article  PubMed  Google Scholar 

  52. Thorve VS, Kshirsagar AD, Vyawahare NS, Joshi VS, Ingale KG, Mohite RJ. Diabetes-induced erectile dysfunction: epidemiology, pathophysiology and management. J Diabetes Complications. 2011;25:129–36.

    Article  PubMed  Google Scholar 

  53. Ruan Y, Li M, Wang T, Yang J, Rao K, Wang S, et al. Taurine supplementation improves erectile function in rats with streptozotocin-induced type 1 diabetes via amelioration of penile fibrosis and endothelial dysfunction. J Sex Med. 2016;13:778–85.

    Article  PubMed  Google Scholar 

  54. Yuan P, Ma D, Gao X, Wang J, Li R, Liu Z, et al. Liraglutide ameliorates erectile dysfunction via regulating oxidative stress, the rhoa/rock pathway and autophagy in diabetes mellitus. Front Pharmacol. 2020;11:1257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cui K, Tang Z, Li CC, Wang T, Rao K, Wang SG, et al. Lipoxin a4 improves erectile dysfunction in rats with type i diabetes by inhibiting oxidative stress and corporal fibrosis. Asian J Androl. 2018;20:166–72.

    Article  CAS  PubMed  Google Scholar 

  56. Christ GJ, Hsieh Y, Zhao W, Schenk G, Venkateswarlu K, Wang HZ, et al. Effects of streptozotocin-induced diabetes on bladder and erectile (dys)function in the same rat in vivo. BJU Int. 2006;97:1076–82.

    Article  PubMed  Google Scholar 

  57. Winston JA, Rivera A, Cai J, Patterson AD, Theriot CM. Secondary bile acid ursodeoxycholic acid alters weight, the gut microbiota, and the bile acid pool in conventional mice. PLoS One. 2021;16:e0246161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Oh AR, Bae JS, Lee J, Shin E, Oh BC, Park SC, et al. Ursodeoxycholic acid decreases age-related adiposity and inflammation in mice. BMB Rep. 2016;49:105–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Troisi G, Crisciotti F, Gianturco V, D’Ottavio E, Lo Iacono C, Formosa V, et al. The treatment with ursodeoxycholic acid in elderly patients affected by NAFLD and metabolic syndrome: a case control study. Clin Ter. 2013;164:203–7.

    CAS  PubMed  Google Scholar 

  60. Floreani A, Cazzagon N, Franceschet I, Canesso F, Salmaso L, Baldo V. Metabolic syndrome associated with primary biliary cirrhosis. J Clin Gastroenterol. 2015;49:57–60.

    Article  CAS  PubMed  Google Scholar 

  61. Murakami M, Une N, Nishizawa M, Suzuki S, Ito H, Horiuchi T. Incretin secretion stimulated by ursodeoxycholic acid in healthy subjects. Springerplus. 2013;2:20.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Bomzon A, Ljubuncic P. Bile acids as endogenous vasodilators? Biochem Pharmacol. 1995;49:581–9.

    Article  CAS  PubMed  Google Scholar 

  63. Fiorucci S, Zampella A, Cirino G, Bucci M, Distrutti E. Decoding the vasoregulatory activities of bile acid-activated receptors in systemic and portal circulation: Role of gaseous mediators. Am J Physiol Heart Circ Physiol. 2017;312:H21–32.

    Article  PubMed  Google Scholar 

  64. Sinisalo J, Vanhanen H, Pajunen P, Vapaatalo H, Nieminen MS. Ursodeoxycholic acid and endothelial-dependent, nitric oxide-independent vasodilatation of forearm resistance arteries in patients with coronary heart disease. Br J Clin Pharmacol. 1999;47:661–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sunagane N, Kobori T, Urono T, Kubota K. Possible mechanisms of spasmolytic action of bile salts on the isolated guinea-pig gallbladder. Nihon Heikatsukin Gakkai Zasshi. 1990;26:143–50.

    Article  CAS  PubMed  Google Scholar 

  66. Ko SH, Hong OK, Kim JW, Ahn YB, Song KH, Cha BY, et al. High glucose increases extracellular matrix production in pancreatic stellate cells by activating the renin-angiotensin system. J Cell Biochem. 2006;98:343–55.

    Article  CAS  PubMed  Google Scholar 

  67. Poczatek MH, Hugo C, Darley-Usmar V, Murphy-Ullrich JE. Glucose stimulation of transforming growth factor-beta bioactivity in mesangial cells is mediated by thrombospondin-1. Am J Pathol. 2000;157:1353–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Li JH, Wang W, Huang XR, Oldfield M, Schmidt AM, Cooper ME, et al. Advanced glycation end products induce tubular epithelial-myofibroblast transition through the RAGEERK1/2 MAP kinase signaling pathway. Am J Pathol. 2004;164:1389–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Oldfield MD, Bach LA, Forbes JM, Nikolic-Paterson D, McRobert A, Thallas V, et al. Advanced glycation end products cause epithelialmyofibroblast transdifferentiation via the receptor for advanced glycation end products (RAGE). J Clin Investig. 2001;108:1853–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Martinez N, Vallerskog T, West K, Nunes-Alves C, Lee J, Martens GW, et al. Chromatin decondensation and T cell hyperresponsiveness in diabetes-associated hyperglycemia. J Immunol. 2014;193:4457–68.

    Article  CAS  PubMed  Google Scholar 

  71. Verrecchia F, Mauviel A. Transforming growth factor-beta and fibrosis. World J Gastroenterol. 2007;13:3056–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Tao M, Tasdemir C, Tasdemir S, Shahabi A, Liu G. Penile alterations at early stage of type 1 diabetes in rats. Int Braz J Urol. 2017;43:753–61.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Chen Y, Zhou B, Yu Z, Yuan P, Sun T, Gong J, et al. Baicalein Alleviates Erectile Dysfunction Associated With Streptozotocin-Induced Type I Diabetes by Ameliorating Endothelial Nitric Oxide Synthase Dysfunction, Inhibiting Oxidative Stress and Fibrosis. J Sex Med. 2020;17:1434–47.

    Article  CAS  PubMed  Google Scholar 

  74. Wu Z, Wang H, Ni F, Jiang X, Xu Z, Liu C, et al. Islet transplantation improved penile tissue fibrosis in a rat model of type 1 diabetes. BMC Endocr Disord. 2018;18:49.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Ismail EA, Younis SE, Ismail IY, El-Wazir YM, El-Sakka AI. Early administration of phosphodiesterase 5 inhibitors after induction of diabetes in a rat model may prevent erectile dysfunction. Andrology. 2020;8:241–8.

    Article  CAS  PubMed  Google Scholar 

  76. Francis SH, Corbin JD. PDE5 inhibitors: targeting erectile dysfunction in diabetics. Curr Opin Pharmacol. 2011;11:683–8.

    Article  CAS  PubMed  Google Scholar 

  77. Andersson KE. Mechanisms of penile erection and basis for pharmacological treatment of erectile dysfunction. Pharm. Rev. 2011;63:811–59.

    Article  CAS  PubMed  Google Scholar 

  78. Saenz de Tejada I, Goldstein I, Azadzoi K, Krane RJ, Cohen RA. Impaired neurogenic and endothelium-mediated relaxation of penile smooth muscle from diabetic men with impotence. New Engl J Med. 1989;320:1025–30.

    Article  CAS  PubMed  Google Scholar 

  79. Chung AC, Huang XR, Zhou L, Heuchel R, Lai KN, Lan HY. Disruption of the smad7 gene promotes renal fibrosis and inflammation in unilateral ureteral obstruction (uuo) in mice. Nephrol Dial Transplant. 2009;24:1443–54.

    Article  CAS  PubMed  Google Scholar 

  80. Liu GX, Li YQ, Huang XR, Wei L, Chen HY, Shi YJ, et al. Disruption of smad7 promotes ang ii-mediated renal inflammation and fibrosis via sp1-tgf-beta/smad3-nf.Kappab-dependent mechanisms in mice. PLoS One. 2013;8:e53573.

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  81. Lan HY, Mu W, Tomita N, Huang XR, Li JH, Zhu HJ, et al. Inhibition of renal fibrosis by gene transfer of inducible smad7 using ultrasound-microbubble system in rat uuo model. J Am Soc Nephrol. 2003;14:1535–48.

    Article  CAS  PubMed  Google Scholar 

  82. Dooley S, Hamzavi J, Ciuclan L, Godoy P, Ilkavets I, Ehnert S, et al. Hepatocyte-Specific Smad7 Expression Attenuates TGFb-Mediated Fibrogenesis and Protects Against Liver Damage. Gastroenterology. 2008;135:642–659.e46.

    Article  CAS  PubMed  Google Scholar 

  83. Hamzavi J, Ehnert S, Godoy P, Ciuclan L, Weng H, Mertens PR, et al. Disruption of the Smad7 gene enhances CCI4-dependent liver damage and fibrogenesis in mice. J Cell Mol Med. 2008;12:2130–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Feride Sena Sezen’s contribution to the experimental methodology, Yesim Kaya Yasar’s contribution to the analysis of the data, Atlas Biotechnology Laboratory’s (Ankara, Türkiye) contribution to the analysis of Western Blot, Scientific Research Project Coordination Unit of Karadeniz Technical University for funding and KTU Academic Writing Center for checking the English linguistics of the article.

Funding

This study was supported by the Scientific Research Project Coordination Unit of Karadeniz Technical University (Grant Number: TDK-2020-8748) and presented as a part of doctoral thesis.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: ICN, NIK. Methodology: ICN, SS, GK, NIK. Data curation, investigaton: ICN, SS, GK, MKD, NIK. Funding acquisition: NIK. Writing original draft: ICN, NIK. Review & editing: ICN, SS, MKD, NIK.

Corresponding author

Correspondence to Irem Cavusoglu Nalbantoglu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cavusoglu Nalbantoglu, I., Sevgi, S., Kerimoglu, G. et al. Ursodeoxycholic acid ameliorates erectile dysfunction and corporal fibrosis in diabetic rats by inhibiting the TGF-β1/Smad2 pathway. Int J Impot Res (2024). https://doi.org/10.1038/s41443-024-00868-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41443-024-00868-9

Search

Quick links