Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Threshold for copulation-induced analgesia varies according to the ejaculatory endophenotypes in rats

Abstract

Analgesia may be modulated by multiple internal and external factors. In prior studies, copulatory-induced analgesia was demonstrated using the vocalization threshold to tail shock (VTTS) in male and female rats. Three ejaculatory endophenotypes have been characterized in male Wistar rats based upon their ejaculation latency (EL). Since intromissions and ejaculations produce analgesia, and these copulatory patterns are performed with different frequency depending on the male’s ejaculatory endophenotype, we hypothesized that copulation-induced analgesia would vary in relation to these endophenotypes. In the present study, we used three groups according to the EL (medians): rapid ejaculators (236 s; n = 21), intermediate ejaculators (663.2 s; n = 20) and sluggish ejaculators (1582.2 s; n = 8). Our aim was to evaluate whether copulation-induced analgesia is related to the ejaculatory endophenotypes during two consecutive ejaculatory series (EJS). In the first EJS, the VTTS of the rapid ejaculators was significantly higher than that of intermediate and sluggish rats. At the onset of the second EJS, the VTTS of the rapid and intermediate ejaculators was significantly higher than that of the sluggish rats. No differences in VTTS were observed during the first or second post-ejaculatory intervals among the three groups. These findings provide evidence that the more intromissions that occurred per unit time, the higher was the level of analgesia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Vocalization threshold to tail shock (VTTS) among rapid, intermediate, and sluggish ejaculators.
Fig. 2: Vocalization threshold to tail shock (VTTS) in each endophenotype throughout two ejaculatory series (EJS1, EJS2) and two postejaculatory intervals (PEI1, PEI2).
Fig. 3: Copulatory parameters of rapid, intermediate, and sluggish ejaculators in two ejaculatory series.
Fig. 4: Hypothetical schema to account for copulatory analgesia.

Similar content being viewed by others

References

  1. Yaksh T. The effects of intrathecal administered opioid and adrenergic agents of spinal function. In: Yaksh T, editor. Spinal afferent processing. New York: Plenum Press; 1986. p. 505–39. https://doi.org/10.1007/978-1-4684-4994-5.

  2. Szechtman H, Hershkowitz M, Simantov R. Sexual behavior decreases pain sensitivity and stimulates endogenous opioids in male rats. Eur J Pharmacol. 1981;70:279–85. https://doi.org/10.1016/0014-2999(81)90161-8.

    Article  CAS  PubMed  Google Scholar 

  3. Forsberg G, Wiesenfeld-Hallin Z, Eneroth P, Södersten P. Sexual behavior induces naloxone-reversible hypoalgesia in male rats. Neurosci Lett. 1987;81:151–4. https://doi.org/10.1016/0304-3940(87)90356-9.

    Article  CAS  PubMed  Google Scholar 

  4. González-Mariscal G, Gómora P, Caba M, Beyer C. Copulatory analgesia in male rats ensues from arousal, motor activity, and genital stimulation: blockage by manipulation and restraint. Physiol Behav. 1992;51:775–81. https://doi.org/10.1016/0031-9384(92)90115-I.

    Article  PubMed  Google Scholar 

  5. González-Mariscal G, Gómora P, Beyer C. Participation of opiatergic, GABAergic, and serotonergic systems in the expression of copulatory analgesia in male rats. Pharmacol Biochem Behav. 1994;49:303–7. https://doi.org/10.1016/0091-3057(94)90425-1.

    Article  PubMed  Google Scholar 

  6. Saldívar-González A, Fernández-Guasti A. Ejaculation induced changes in escape latency in the hot plate test: pharmacological analysis of anxiolytic versus analgesic effect. Behav Brain Res. 1994;60:191–8. https://doi.org/10.1016/0166-4328(94)90147-3.

    Article  PubMed  Google Scholar 

  7. Sachs BD, Barfield RJ. Functional analysis of masculine copulatory behavior in the rat. In: Rosenblatt JS, Hinde RA, Shaw E, Beer C, editors. Advances in the Study of Behavior, vol 7. Academic Press;1976. p. 91–154. https://doi.org/10.1016/S0065-3454(08)60166-7.

  8. Pattij T, Olivier B, Waldinger M. Animal models of ejaculatory behavior. Curr Pharm Des. 2005;145:10–20. https://doi.org/10.2174/138161205774913363.

    Article  Google Scholar 

  9. Olivier B, Chan JSW, Pattij T, de Jong TR, Oosting RS, Veening JG, et al. Psychopharmacology of male rat sexual behavior: modeling human sexual dysfunctions?, Int J Impot Res. 2006:S14–S23. https://doi.org/10.1038/sj.ijir.3901330.

  10. Borgdorff AJ, Rössler AS, Clément P, Bernabé J, Alexandre L, Giuliano F. Differences in the spinal command of ejaculation in rapid ejaculating rats. J Sex Med. 2009;6:2197–205. https://doi.org/10.1111/j.1743-6109.2009.01308.x.

    Article  PubMed  Google Scholar 

  11. Zipse LR, Brandling-Bennett EM, Clark AS. Paced mating behavior in the naturally cycling and the hormone-treated female rat. Physiol Behav. 2000;70:205–9. https://doi.org/10.1016/S0031-9384(00)00242-0.

    Article  CAS  PubMed  Google Scholar 

  12. Lucio RA, Rodríguez-Piedracruz V, Tlachi-López JL, García-Lorenzana M, Fernández-Guasti A. Copulation without seminal expulsion: the consequence of sexual satiation and the Coolidge effect. Andrology. 2014;2:450–7. https://doi.org/10.1111/j.2047-2927.2014.00209.x.

    Article  CAS  PubMed  Google Scholar 

  13. Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol. 2010;8:e1000412 https://doi.org/10.1371/journal.pbio.1000412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang HF, Zhang CY, Li XH, Fu ZZ, Chen ZY. Dorsal penile nerves and primary premature ejaculation. Chin Med J. 2009;122:3017–9. https://doi.org/10.3760/cma.j.issn.0366-6999.2009.24.020.

    Article  PubMed  Google Scholar 

  15. Zhang GX, Yu LP, Bai WJ, Wang XF. Selective resection of dorsal nerves of penis for premature ejaculation. Int J Androl. 2012;35:873–9. https://doi.org/10.1111/j.1365-2605.2012.01296.x.

    Article  PubMed  Google Scholar 

  16. Guo L, Liu Y, Wang X, Yuan M, Yu Y, Zhang X, et al. Significance of penile hypersensitivity in premature ejaculation. Sci Rep. 2017;7:10441–6. https://doi.org/10.1038/s41598-017-09155-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Paick JS, Jeong H, Park MS. Penile sensitivity in men with premature ejaculation. Int J Impot Res. 1998;10:247–50. https://doi.org/10.1038/sj.ijir.3900368.

    Article  CAS  PubMed  Google Scholar 

  18. Segura B, Melo AI, Fleming AS, Mendoza-Garrido ME, González del Pliego M, Aguirre-Benitez EL, et al. Early social isolation provokes electrophysiological and structural changes in cutaneous sensory nerves of adult male rats. Dev Neurobiol. 2014;74:1184–93. https://doi.org/10.1002/dneu.22197.

    Article  PubMed  Google Scholar 

  19. Lenz KM, Sengelaub DR. Maternal licking influences dendritic development of motoneurons in a sexually dimorphic neuromuscular system. Brain Res. 2006;1092:87–99. https://doi.org/10.1016/j.brainres.2006.03.070.

    Article  CAS  PubMed  Google Scholar 

  20. Lenz KM, Graham MD, Parada M, Fleming AS, Sengelaub DR, Monks DA. Tactile stimulation during artificial rearing influences adult function and morphology in a sexually dimorphic neuromuscular system. Dev Neurobiol. 2008;68:542–57. https://doi.org/10.1002/dneu.20608.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Qureshi GA, Södersten P. Sexual activity alters the concentration of amino acids in the cerebrospinal fluid of male rats. Neurosci Lett. 1986;70:374–8. https://doi.org/10.1016/0304-3940(86)90582-3.

    Article  CAS  PubMed  Google Scholar 

  22. Hull EM, Bitran D, Pehek EA, Warner RK, Band LC, Holmes GM. Dopaminergic control of male sex behavior in rats: effects of an intracerebrally-infused agonist. Brain Res. 1986;370:73–81. https://doi.org/10.1016/0006-8993(86)91106-6.

    Article  CAS  PubMed  Google Scholar 

  23. Fernández-Guasti A, Larsson K, Beyer C. GABAergic control of masculine sexual behavior. Pharmacol Biochem Behav. 1986;24:1065–70. https://doi.org/10.1016/0091-3057(86)90456-9.

    Article  PubMed  Google Scholar 

  24. Sawynok J. GABAergic mechanisms of analgesia: an update. Pharmacol Biochem Behav. 1987;26:463–74. https://doi.org/10.1016/0091-3057(87)90148-1.

    Article  CAS  PubMed  Google Scholar 

  25. Agmo A, Paredes R. Opioids and sexual behavior in the male rat. Pharmacol Biochem Behav. 1988;30:1021–34. https://doi.org/10.1016/0091-3057(88)90135-9.

    Article  CAS  PubMed  Google Scholar 

  26. Veening JG, Coolen LM. Neural mechanisms of sexual behavior in the male rat: emphasis on ejaculation-related circuits. Pharmacol Biochem Behav. 2014;121:170–83. https://doi.org/10.1016/j.pbb.2013.12.017.

    Article  CAS  PubMed  Google Scholar 

  27. Basbaum AI, Fields HL. Endogenous pain control mechanisms: review and hypothesis. Ann Neurol. 1978;4:451–62. https://doi.org/10.1002/ana.410040511.

    Article  CAS  PubMed  Google Scholar 

  28. Basbaum AI, Bautista DM, Scherrer G, Julius D. Cellular and molecular mechanisms of pain. Cell. 2009;139:267–84. https://doi.org/10.1016/j.cell.2009.09.028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Waldinger MD. The neurobiological approach to premature ejaculation. J Urol. 2002;168:2359–67. https://doi.org/10.1016/S0022-5347(05)64146-8.

    Article  PubMed  Google Scholar 

  30. Agmo A, Berenfeld R. Reinforcing properties of ejaculation in the male rat: role of opioids and dopamine. Behav Neurosci. 1990;104:177–82. https://doi.org/10.1037/0735-7044.104.1.177.

    Article  CAS  PubMed  Google Scholar 

  31. Lupica CR, Riegel AC. Endocannabinoid release from midbrain dopamine neurons: a potential substrate for cannabinoid receptor antagonist treatment of addiction. Neuropharmacology. 2005;48:1105–16. https://doi.org/10.1016/j.neuropharm.2005.03.016.

    Article  CAS  PubMed  Google Scholar 

  32. Rodríguez-Manzo G, Canseco-Alba A. Anandamide reduces the ejaculatory threshold of sexually sluggish male rats: possible relevance for human lifelong delayed ejaculation disorder. J Sex Med. 2015;12:1128–35. https://doi.org/10.1111/jsm.12866.

    Article  CAS  PubMed  Google Scholar 

  33. Rice ASC, Farquhar-Smith WP, Nagy I. Endocannabinoids and pain: spinal and peripheral analgesia in inflammation and neuropathy. Prostag Leukotr Ess Fat Acids. 2002;66:243–56. https://doi.org/10.1054/plef.2001.0362.

    Article  CAS  Google Scholar 

  34. Sorkins LS, McAdoo DJ, Willis WD. Raphe magnus stimulation-induced antinociception in the cat is associated with release of amino acids as well as serotonin in the lumbar dorsal horn. Brain Res. 1993;618:95–108. https://doi.org/10.1016/0006-8993(93)90433-n.

    Article  Google Scholar 

  35. Hammond DL, Levy RA, Proudfit HK. Hypoalgesia induced by microinjection of a norepinephrine antagonist in the nucleus raphe magnus: reversal by intrathecal administration of a serotonin antagonist. Brain Res. 1980;201:475–9. https://doi.org/10.1016/0006-8993(80)91056-2.

    Article  CAS  PubMed  Google Scholar 

  36. Jacobs BL Central monoaminergic neurons: single-unit studies in behaving animals. In: Meltzer HY, editor. Psychopharmacology. 3rd ed. New York: Raven Press; 1987. p. 159–69. https://doi.org/10.1002/mds.870040114.

  37. Gintzler AR, Peters LC, Komisaruk BR. Attenuation of pregnancy-induced analgesia by hypogastric neurectomy in rats. Brain Res. 1983;277:186–8. https://doi.org/10.1016/0006-8993(83)90924-1.

    Article  CAS  PubMed  Google Scholar 

  38. Roberts LA, Beyer C, Komisaruk BR. Nociceptive responses to altered GABAergic activity at the spinal cord. Life Sci. 1986;39:1667–74. https://doi.org/10.1016/0024-3205(86)90164-5.

    Article  CAS  PubMed  Google Scholar 

  39. Mantyh PW, Peschanski M. Spinal projections from the periaqueductal grey and dorsal raphe in the rat, cat and monkey. Neuroscience. 1982;7:2769–76. https://doi.org/10.1016/0306-4522(82)90099-9.

    Article  CAS  PubMed  Google Scholar 

  40. Moss MS, Basbaum AI. The peptidergic organization of the cat periaqueductal grey. II. The distribution of immunoreactive substance P and vasoactive intestinal polypeptide. J Neurosci. 1983;3:1437–49. https://doi.org/10.1523/JNEUROSCI.03-07-01437.1983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. McKenna KE, Nadelhaft I. The organization of the pudendal nerve in the male and female rat. J Comp Neurol. 1985;248:532–49. https://doi.org/10.1002/cne.902480406.

    Article  Google Scholar 

  42. Swanson LW, Kuypers HGJM. The paraventricular nucleus of the hypothalamus: cytoarchitectonic subdivisions and organization of projections to the pituitary, dorsal vagal complex, and spinal cord as demonstrated by retrograde fluorescence double-labeling methods. J Comp Neurol. 1980;194:555–70. https://doi.org/10.1002/cne.901940306.

    Article  CAS  PubMed  Google Scholar 

  43. Argiolas A, Melis MR. The role of oxytocin and the paraventricular nucleus in the sexual behaviour of male mammals. Physiol Behav. 2004;83:309–17. https://doi.org/10.1016/j.physbeh.2004.08.019.

    Article  CAS  PubMed  Google Scholar 

  44. Véronneau-Longueville F, Rampin O, Freund-Mercier MJ, Tang Y, Calas A, Marson L, et al. Oxytocinergic innervation of autonomic nuclei controlling penile erection in the rat. Neuroscience. 1999;395:247–54. https://doi.org/10.1016/S0306-4522(99)00262-6.

    Article  Google Scholar 

  45. Baskerville TA, Allard J, Wayman C, Douglas AJ. Dopamine-oxytocin interactions in penile erection. Eur J Neurosci. 2009;30:2151–64. https://doi.org/10.1111/j.1460-9568.2009.06999.x.

    Article  CAS  PubMed  Google Scholar 

  46. Rojas-Piloni G, López-Hidalgo M, Martínez-Lorenzana G, Rodríguez-Jiménez J, Condés-Lara M. GABA-mediated oxytocinergic inhibition in dorsal horn neurons by hypothalamic paraventricular nucleus stimulation. Brain Res. 2007;1137:69–77. https://doi.org/10.1016/j.brainres.2006.12.045.

    Article  CAS  PubMed  Google Scholar 

  47. González-Hernández A, Rojas-Piloni G, Condés-Lara M. Oxytocin and analgesia: future trends. Trends Pharmacol Sci. 2014;35:549–51. https://doi.org/10.1016/j.tips.2014.09.004.

    Article  CAS  PubMed  Google Scholar 

  48. Futagami H, Sakuma Y, Kondo Y. Oxytocin mediates copulation-induced hypoalgesia of male rats. Neurosci Lett. 2016;618:122–6. https://doi.org/10.1016/j.neulet.2016.03.007.

    Article  CAS  PubMed  Google Scholar 

  49. Komisaruk BR, Larsson K. Suppression of a spinal and a cranial nerve reflex by vaginal or rectal probing in rats. Brain Res. 1971;35:231–5. https://doi.org/10.1016/0006-8993(71)90608-1.

    Article  CAS  PubMed  Google Scholar 

  50. Sansone GR, Gerdes CA, Steinman JL, Winslow JT, Ottenweller JE, Komisaruk BR, et al. Vaginocervical stimulation releases oxytocin within the spinal cord in rats. Neuroendocrinology. 2002;75:306–15. https://doi.org/10.1159/000057340.

    Article  CAS  PubMed  Google Scholar 

  51. Komisaruk BR, Sansone G. Neural pathways mediating vaginal function: the vagus nerves and spinal cord oxytocin. Scand J Psychol. 2003;44:241–50. https://doi.org/10.1111/1467-9450.00341.

    Article  PubMed  Google Scholar 

  52. Gómora P, González-Flores O, Galicia-Aguas YL, Hoffman KL, Komisaruk BR. Copulation-induced antinociception in female rats is blocked by atosiban, an oxytocin receptor antagonist. Horm Behav. 2019;107:76–79. https://doi.org/10.1016/J.YHBEH.2018.12.001.

    Article  Google Scholar 

Download references

Acknowledgements

We thank the “Posgrado en Ciencias Biológicas” of the Universidad Autónoma de Tlaxcala for the training received during the Doctorate studies.

Funding

This research was partially supported by PROMEP/103.5/09/1294, and CONACYT [grant 1134291 (OGF), and fellowships 487025/277841 (CEAP) and 400424 (MRFM)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosa Angélica Lucio.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aguilar-Pérez, C.E., Gómora-Arrati, P., Komisaruk, B.R. et al. Threshold for copulation-induced analgesia varies according to the ejaculatory endophenotypes in rats. Int J Impot Res 34, 195–202 (2022). https://doi.org/10.1038/s41443-020-00390-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41443-020-00390-8

Search

Quick links