Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

RNA processing modification mediated subtypes illustrate the distinctive features of tumor microenvironment in hepatocellular carcinoma

Abstract

Multiple transcript isoforms of genes can be formed by processing and modifying the 5′ and 3′ ends of RNA. Herein, the aim of this study is to uncover the characteristics of RNA processing modification (RPM) in hepatocellular carcinoma (HCC), and to identify novel biomarkers and potential targets for treatment. Firstly, integrated bioinformatics analysis was carried out to identify risk prognostic RPM regulators (RPMRs). Then, we used these RPMRs to identify subtypes of HCC and explore differences in immune microenvironment and cellular function improvement pathways between the sub-types. Finally, we used the principal component analysis algorithms to estimate RPMscore, which were applied to 5 cohorts. Lower RPMscore among patients correlated with a declined survival rate, increased immune infiltration, and raised expression of immune checkpoints, aligning with the “immunity tidal model theory”. The RPMscore exhibited robust, which was validated in multiple datasets. Mechanistically, low RPMscore can create an immunosuppressive microenvironment in HCC by manipulating tumor-associated macrophages. Preclinically, patients with high RPMscore might benefit from immunotherapy. The RPMscore is helpful in clustering HCC patients with distinct prognosis and immunotherapy. Our RPMscore model can help clinicians to select personalized therapy for HCC patients, and RPMscore may act a part in the development of HCC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Identification of differential expression and prognostic of RPMRs in TCGA-LIHC.
Fig. 2: The molecular subtypes categorization of HCC base on 8 RPMRs.
Fig. 3: Identification of gene subtypes based on 86 prognostic RPMRs-related DEGs.
Fig. 4: Construction of RPMscore.
Fig. 5: Low RPMscore create an immunosuppressive microenvironment in HCC.
Fig. 6: Low RPMscore conferred attenuated antitumor immunity through macrophages chemotaxis.
Fig. 7: The prognostic value of RPMscore in HCC patients.
Fig. 8: Internal and external validation of RPMscore.
Fig. 9: RPMscore in the role of anti-PD-1/L1 immunotherapy.
Fig. 10
Fig. 11: RPMscore is a robust independent prognosis factor in Fudan cohort.

Similar content being viewed by others

Data availability

The datasets generated for this study can be found in the GEO database (GSE14520, GSE36376, GSE76427, GSE20140, GSE27150, GSE140901; https://www.ncbi.nlm.nih.gov/geo/), and UCSC Xena website (https://gdc.xenahubs.net).

References

  1. Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA: a cancer J Clin. 2023;73:17–48.

    Google Scholar 

  2. Vogel A, Meyer T, Sapisochin G, Salem R, Saborowski A. Hepatocellular carcinoma. Lancet (Lond, Engl). 2022;400:1345–62.

    Article  CAS  Google Scholar 

  3. Yang JD, Hainaut P, Gores GJ, Amadou A, Plymoth A, Roberts LR. A global view of hepatocellular carcinoma: trends, risk, prevention and management. Nat Rev Gastroenterol Hepatol. 2019;16:589–604.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Sangro B, Sarobe P, Hervás-Stubbs S, Melero I. Advances in immunotherapy for hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol. 2021;18:525–43.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Llovet JM, Castet F, Heikenwalder M, Maini MK, Mazzaferro V, Pinato DJ, et al. Immunotherapies for hepatocellular carcinoma. Nat Rev Clin Oncol. 2022;19:151–72.

    Article  CAS  PubMed  Google Scholar 

  6. Zhu AX, Finn RS, Edeline J, Cattan S, Ogasawara S, Palmer D, et al. Pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib (KEYNOTE-224): a non-randomised, open-label phase 2 trial. Lancet Oncol. 2018;19:940–52.

    Article  PubMed  Google Scholar 

  7. Gok Yavuz B, Hasanov E, Lee SS, Mohamed YI, Curran MA, Koay EJ, et al. Current Landscape and Future Directions of Biomarkers for Immunotherapy in Hepatocellular Carcinoma. J Hepatocell carcinoma. 2021;8:1195–207.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ayuso C, Rimola J, Vilana R, Burrel M, Darnell A, García-Criado Á, et al. Diagnosis and staging of hepatocellular carcinoma (HCC): current guidelines. Eur J Radiol. 2018;101:72–81.

    Article  PubMed  Google Scholar 

  9. Reyes A, Huber W. Alternative start and termination sites of transcription drive most transcript isoform differences across human tissues. Nucleic acids Res. 2018;46:582–92.

    Article  CAS  PubMed  Google Scholar 

  10. Gruber AJ, Zavolan M. Alternative cleavage and polyadenylation in health and disease. Nat Rev Genet. 2019;20:599–614.

    Article  CAS  PubMed  Google Scholar 

  11. Tan S, Zhang M, Shi X, Ding K, Zhao Q, Guo Q, et al. CPSF6 links alternative polyadenylation to metabolism adaption in hepatocellular carcinoma progression. J Exp Clin Cancer Res: CR. 2021;40:85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chen SL, Zhu ZX, Yang X, Liu LL, He YF, Yang MM, et al. Cleavage and Polyadenylation Specific Factor 1 Promotes Tumor Progression via Alternative Polyadenylation and Splicing in Hepatocellular Carcinoma. Front cell Dev Biol. 2021;9:616835.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Zeng X, Liao G, Li S, Liu H, Zhao X, Li S, et al. Eliminating METTL1-mediated accumulation of PMN-MDSCs prevents hepatocellular carcinoma recurrence after radiofrequency ablation. Hepatol (Baltim, Md). 2023;77:1122–38.

    Article  Google Scholar 

  14. Zhao S, Ye Z, Stanton R. Misuse of RPKM or TPM normalization when comparing across samples and sequencing protocols. RNA (N.Y, N.Y). 2020;26:903–9.

    Article  CAS  Google Scholar 

  15. Parker HS, Leek JT, Favorov AV, Considine M, Xia X, Chavan S, et al. Preserving biological heterogeneity with a permuted surrogate variable analysis for genomics batch correction. Bioinforma (Oxf, Engl). 2014;30:2757–63.

    CAS  Google Scholar 

  16. Mariathasan S, Turley SJ, Nickles D, Castiglioni A, Yuen K, Wang Y, et al. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature. 2018;554:544–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic acids Res. 2015;43:e47.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Wilkerson MD, Hayes DN. ConsensusClusterPlus: a class discovery tool with confidence assessments and item tracking. Bioinforma (Oxf, Engl). 2010;26:1572–3.

    CAS  Google Scholar 

  19. Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, et al. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innov (Camb (Mass)). 2021;2:100141.

    CAS  Google Scholar 

  20. Yoshihara K, Shahmoradgoli M, Martínez E, Vegesna R, Kim H, Torres-Garcia W, et al. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat Commun. 2013;4:2612.

    Article  PubMed  Google Scholar 

  21. Finotello F, Trajanoski Z. Quantifying tumor-infiltrating immune cells from transcriptomics data. Cancer Immunol, Immunother: CII. 2018;67:1031–40.

    Article  CAS  PubMed  Google Scholar 

  22. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, et al. Robust enumeration of cell subsets from tissue expression profiles. Nat methods. 2015;12:453–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Aran D, Hu Z, Butte AJ. xCell: digitally portraying the tissue cellular heterogeneity landscape. Genome Biol. 2017;18:220.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102:15545–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Su Y, Huang J, Hu J. m(6)A RNA Methylation Regulators Contribute to Malignant Progression and Have Clinical Prognostic Impact in Gastric Cancer. Front Oncol. 2019;9:1038.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wang X, Zhang S, Han K, Wang L, Liu X. Induction of Apoptosis by Matrine Derivative ZS17 in Human Hepatocellular Carcinoma BEL-7402 and HepG2 Cells through ROS-JNK-P53 Signalling Pathway Activation. Int J Mol Sci. 2022;23:15991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li XY, Cui X, Xie CQ, Wu Y, Song T, He JD, et al. Andrographolide causes p53-independent HCC cell death through p62 accumulation and impaired DNA damage repair. Phytomed: Int J Phytother phytopharmacol. 2023;121:155089.

    Article  CAS  Google Scholar 

  28. Tang B, Zhu J, Wang Y, Chen W, Fang S, Mao W, et al. Targeted xCT-mediated Ferroptosis and Protumoral Polarization of Macrophages Is Effective against HCC and Enhances the Efficacy of the Anti-PD-1/L1 Response. Adv Sci (Weinh, Baden-Wurtt, Ger). 2023;10:e2203973.

    Google Scholar 

  29. Chen Q, Zheng W, Guan J, Liu H, Dan Y, Zhu L, et al. SOCS2-enhanced ubiquitination of SLC7A11 promotes ferroptosis and radiosensitization in hepatocellular carcinoma. Cell Death Differ. 2023;30:137–51.

    Article  CAS  PubMed  Google Scholar 

  30. Jiang N, Yu Y, Wu D, Wang S, Fang Y, Miao H, et al. HLA and tumour immunology: immune escape, immunotherapy and immune-related adverse events. J Cancer Res Clin Oncol. 2023;149:737–47.

    Article  PubMed  Google Scholar 

  31. Zhan X, Wu R, Kong XH, You Y, He K, Sun XY, et al. Elevated neutrophil extracellular traps by HBV-mediated S100A9-TLR4/RAGE-ROS cascade facilitate the growth and metastasis of hepatocellular carcinoma. Cancer Commun (Lond, Engl). 2023;43:225–45.

    Article  Google Scholar 

  32. Zhou C, Weng J, Liu C, Liu S, Hu Z, Xie X, et al. Disruption of SLFN11 Deficiency-Induced CCL2 Signaling and Macrophage M2 Polarization Potentiates Anti-PD-1 Therapy Efficacy in Hepatocellular Carcinoma. Gastroenterology. 2023;164:1261–78.

    Article  CAS  PubMed  Google Scholar 

  33. Jiang Y, Hong K, Zhao Y, Xu K. Emerging role of deubiquitination modifications of programmed death-ligand 1 in cancer immunotherapy. Front Immunol. 2023;14:1228200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yuan X, Zhou J, Zhou L, Huang Z, Wang W, Qiu J, et al. Apoptosis-Related Gene-Mediated Cell Death Pattern Induces Immunosuppression and Immunotherapy Resistance in Gastric Cancer. Front Genet. 2022;13:921163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ma P, Zou C, Xia S. Oncogenic signaling pathway mediated by Notch pathway-related genes induces immunosuppression and immunotherapy resistance in hepatocellular carcinoma. Immunogenetics. 2022;74:539–57.

    Article  CAS  PubMed  Google Scholar 

  36. Zhou L, Xu G, Huang F, Chen W, Zhang J, Tang Y. Apoptosis related genes mediated molecular subtypes depict the hallmarks of the tumor microenvironment and guide immunotherapy in bladder cancer. BMC Med Genomics. 2023;16:88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang S, Chen L, Liu W. Matrix stiffness-dependent STEAP3 coordinated with PD-L2 identify tumor responding to sorafenib treatment in hepatocellular carcinoma. Cancer cell Int. 2022;22:318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nie X, Chen W, Zhu Y, Huang B, Yu W, Wu Z, et al. B7-DC (PD-L2) costimulation of CD4(+) T-helper 1 response via RGMb. Cell Mol Immunol. 2018;15:888–97.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported by the Construction of Major Subject [Grant no. (YNZDXK202201, 2022-2025)] of Huadu District People´s Hospital of Guangzhou; the construction project of inheritance studio of national famous and old traditional Chinese Medicine experts (Grant no.140000020132).

Author information

Authors and Affiliations

Authors

Contributions

M.D. and X.H.L. conceived the project. S.L. acquired and processed raw sequencing data. L.B.Z. performed data integration and conducted data analysis. X.H.L. and S.L. assisted in the interpretation of results. C.B.Z. wrote the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Min Dai or Chaobei Zhu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

The study was approved by the ethical committee in the Renmin Hospital, Hubei University of Medicine, and conducted under the guidance of the Declaration of Helsinki.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Liu, S., Zou, L. et al. RNA processing modification mediated subtypes illustrate the distinctive features of tumor microenvironment in hepatocellular carcinoma. Genes Immun 25, 132–148 (2024). https://doi.org/10.1038/s41435-024-00265-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41435-024-00265-8

Search

Quick links